• Title/Summary/Keyword: wireless transceivers

Search Result 52, Processing Time 0.026 seconds

Efficient key generation leveraging wireless channel reciprocity and discrete cosine transform

  • Zhan, Furui;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2701-2722
    • /
    • 2017
  • Key generation is essential for protecting wireless networks. Based on wireless channel reciprocity, transceivers can generate shared secret keys by measuring their communicating channels. However, due to non-simultaneous measurements, asymmetric noises and other interferences, channel measurements collected by different transceivers are highly correlated but not identical and thus might have some discrepancies. Further, these discrepancies might lead to mismatches of bit sequences after quantization. The referred mismatches significantly affect the efficiency of key generation. In this paper, an efficient key generation scheme leveraging wireless channel reciprocity is proposed. To reduce the bit mismatch rate and enhance the efficiency of key generation, the involved transceivers separately apply discrete cosine transform (DCT) and inverse discrete cosine transform (IDCT) to pre-process their measurements. Then, the outputs of IDCT are quantified and encoded to establish the bit sequence. With the implementations of information reconciliation and privacy amplification, the shared secret key can be generated. Several experiments in real environments are conducted to evaluate the proposed scheme. During each experiment, the shared key is established from the received signal strength (RSS) of heterogeneous devices. The results of experiments demonstrate that the proposed scheme can efficiently generate shared secret keys between transceivers.

Statistical Modeling of Inter-Aircraft Distance (민간항공기 사이의 거리 분석 모델링)

  • Jin, Sunggeun;Kim, Jinkyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • We analyze Inter-Aircraft Distances between Two Closest Flying Passenger Aircrafts on a Global Scale from Real Aviation Databases. Then, We Reveal that the Distances Follow a Gamma-Pareto Distribution. Our Finding is Useful for Designing Wireless Transceivers Since it Gives the Probability Distribution Regarding the Link Distances which the Wireless Transceivers should Cover for Providing Internet Services.

A Wireless Identification System Using a Solar Cell and RF Transceivers (솔라셀과 RF송수신기를 이용한 무선인식장치)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.337-343
    • /
    • 2016
  • In this paper, we newly introduce a wireless identification system using a solar cell and RF transceivers. The reader sends interrogating signal to a transponder using LED visible light, and the transponder responds to the reader using RF signal. The transponder consists of a solar cell, an amplifier, a microprocessor, and an RF transmitter. The solar cell receives the visible light from the reader and generates current to supply electric power to the other devices in the transponder. At the same time, the solar cell detects interrogating signal in the reader light. The microprocessor senses the interrogating signal and generates a responding signal. The RF transmitter radiates the responding signal to the reader. The transponder is a passive circuit because it operates without external power. In experiments, the maximum read distance between a reader and a transponder was about 1.6 meter.

A Method of Combining Scrambling Technology with Error Control Coding to Realize Both Confidentiality and Reliability in Wireless M2M Communication

  • Zhang, Meng;Wang, Zhe;Guo, Menghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.162-177
    • /
    • 2012
  • In this paper we present a novel method of applying image scrambling technology which belongs to the information hiding field in the error control coding to introduce confidentiality in wireless machine to machine communication. The interleaver in serial concatenated convolutional codes, which is the key module in overcoming burst errors, is deliberately designed with the scrambling function to provide a low error rate for those authorized transceivers. By contrast, the unauthorized transceivers without keys would get so high an error rate that decoding bits could bring little value, thus realizing both the confidentiality and reliability in wireless machine to machine communication.

Development of a Telemetering Device Using RF Transceivers and a Mobile-Phone (RF 트랜시버와 무선전화기를 이용한 텔레미터링 장치 개발)

  • Jung, Tae-Hong;Kang, Moon-Ho;Lee, Jeong-Kn
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2173-2175
    • /
    • 2004
  • This paper addresses a telemetering device which uses RF transceivers and a mobile-phone. Locally collected data arc encoded with a BCH error correcting code and transferred to a receiver through a RF module. The receiver-side RF module decodes the transferred data and then repetes them to a mobile-phone. Lastly, the mobile-phone hands over the data through a wireless phone network to a host computer in the internet.

  • PDF

Optimal Energy-Efficient Power Allocation and Outage Performance Analysis for Cognitive Multi-Antenna Relay Network Using Physical-Layer Network Coding

  • Liu, Jia;Zhu, Ying;Kang, GuiXia;Zhang, YiFan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3018-3036
    • /
    • 2013
  • In this paper, we investigate power allocation scheme and outage performance for a physical-layer network coding (PNC) relay based secondary user (SU) communication in cognitive multi-antenna relay networks (CMRNs), in which two secondary transceivers exchange their information via a multi-antenna relay using PNC protocol. We propose an optimal energy-efficient power allocation (OE-PA) scheme to minimize total energy consumption per bit under the sum rate constraint and interference power threshold (IPT) constraints. A closed-form solution for optimal allocation of transmit power among the SU nodes, as well as the outage probability of the cognitive relay system, are then derived analytically and confirmed by numerical results. Numerical simulations demonstrate the PNC protocol has superiority in energy efficiency performance over conventional direct transmission protocol and Four-Time-Slot (4TS) Decode-and-Forward (DF) relay protocol, and the proposed system has the optimal outage performance when the relay is located at the center of two secondary transceivers.

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

Proposal and Evaluation of Ultra High Speed Wireless Cell Backbone Networks (도시형 초고속 무선통신 셀백본망의 제안 및 평가)

  • Shin, Cheon-Woo;Park, Sung-Hyun
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.243-248
    • /
    • 2003
  • This paper is contents on that construct ultra high speed wireless communication cell backbone net of city using of wireless communication transceiver for millimeter wave band. A new type of 60GHz wave band wireless transceiver using NRD waveguide. This 60GHz transceiver has excellent signal's absorption characteristics of oxygen molecule than the other millimeter wave bands. We constructed service networks to cell interval within about 500m to 3Km laying stress on wireless backbone node using 60GHz transceivers, and did it so that city type wireless communication cell backbone networks of 155.52Mbps ATM(OC-3) may be possible. The possible use of wireless backbone networks technology in a rainy day and a clear day was evaluated at 1Km data link distance. We can measured bit error rate(BER). BER is $10^{-11}$ at 155.52Mbps ATM(OC-3) in a clear day and $10^{-6}$ in a heavy rain more than 35mm per time. Also, we constructed wireless cell backbone networks distance to use several 60GHz transceivers and investigated data transmission rate between main center and local center of long distance. In proposed wireless cell backbone networks, the data throughput was approximately 80Mbit/sec. Therefore, if use transceiver, it is possible that city type ultra high speed wireless communication cell backbone networks construction of 100Mbps, 155.52Mbps, 622Mbps, 1Gbps and 1.2Gbps degrees.

  • PDF

A 950 MHz CMOS RF frequency synthesizer for CDMA wireless transceivers (CDMA 이동 통신 단말기용 950 MHz CMOS RF 주파수 합성기)

  • 김보은;김수원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.18-27
    • /
    • 1997
  • A CMOS 950 MHz frequency synthesizer is designed and fabricated in a 0.8.mu.m standard CMOS process for IS-95-A CDMA mobile communication transceivers To utilize a CMOS ring VCO in a CDMA wireless communication receisver, we employed a QDC (quasi-direct conversion) receiver architecture for CDMA applications. Realized RF frequency synthesizer used as the RF local oscillator for a QDC receiver exhibits a phase noise of -92 dBc/Hz at 885kHz offset from the 950.4 MHz carrier, which complies with IS-95-A CDMA specification. It has a rms jitter of 23.7 ps, and draws 30mA from a 5V supply. Measured I/Q phase error of the 950.4 output signals is 0.7 degree.

  • PDF

RF CMOS 기술을 이용한 이동통신용 부품기술 동향

  • 김천수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2001
  • Wireless communication systems will be one of the biggest drivers of semiconductor products over the next decade. Global Positioning System (GPS) and Blue-tooth, HomeRF, and Wireless-LNA system are just a few of RF-module candidate awaiting integration into next generation mobile phone. Motivated by the growing needs for lowcost and multi-band/multi-function single chip wireless transceivers, CMOS technology has been recognized as a most promising candidate for the implementation of the future wireless communication systems. This paper presents recent developments in RF CMOS technology so far, much of them have been developed in ETRI, and from them forecasts technology trends in the near future.

  • PDF