• 제목/요약/키워드: wireless signal transmission

검색결과 508건 처리시간 0.032초

Low-power 6LoWPAN Protocol Design (저 전력 6LoWPAN 프로토콜 설계)

  • Kim, Chang-Hoon;Kim, Il-Hyu;Cha, Jung-Woo;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제12권4호
    • /
    • pp.274-280
    • /
    • 2011
  • Due to their rapid growth and new paradigm applications, wireless sensor networks(WSNs) are morphing into low power personal area networks(LoWPANs), which are envisioned to grow radically. The fragmentation and reassembly of IP data packet is one of the most important function in the 6LoWPAN based communication between Internet and wireless sensor network. However, since the 6LoWPAN data unit size is 102 byte for IPv6 MTU size is 1200 byte, it increases the number of fragmentation and reassembly. In order to reduce the number of fragmentation and reassembly, this paper presents a new scheme that can be applicable to 6LoWPAN. When a fragmented packet header is constructed, we can have more space for data. This is because we use 8-bits routing table ill instead of 16-bits or 54-bits MAC address to decide the destination node. Analysis shows that our design has roughly 7% or 22% less transmission number of fragmented packets, depending on MAC address size(16-bits or 54-bits), compared with the previously proposed scheme in RFC4944. The reduced fragmented packet transmission means a low power consumption since the packet transmission is the very high power function in wireless sensor networks. Therefore the presented fragmented transmission scheme is well suited for low-power wireless sensor networks.

A Study on Comparison of Control Methods in Wireless Power Transfer Systems (무선전력전송시스템 제어 기술 비교 연구)

  • Jang, Dong-won;Cho, In-Kwee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.113-116
    • /
    • 2015
  • This paper presented about the system for controlling a wireless power transmission using bluetooth protocol. Bluetooth protocol has been applied in many fields that communicate with data and audio signal in short range. Recently, however, Bluetooth low energy(BLE) more simple than the existing protocol is standardized and is widely used in medical applications and consumer electronics that handle small amount of sensor data and transmit by the low power control signal. It has also been adopted as the standard for the control in the wireless power transfer system. In this paper, We analysed and described the bluetooth low energy protocol techniques for controlling the wireless power transfer system.

  • PDF

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • 제18권2호
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

DSSS-Based Channel Access Technique DS-CDMA for Underwater Acoustic Transmission

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Huang, Linyun;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.53-59
    • /
    • 2015
  • This paper proposes a novel method for acoustically and wirelessly transmitting data underwater with a high transmission rate. The method uses the most promising physical layer and multiple access technique (i.e., the code division multiple channel access technique) to divide the channel into subchannels. Data is transmitted through these subchannels. The codes are pseudo-random noise (PN) sequences. In the spread-spectrum technique, a signal such as electrical, electromagnetic, acoustic signal generated in a particular bandwidth is deliberately spread in the frequency domain, which results in a signal with a wider bandwidth. This paper reviews the possibility of application of the direct-sequence code division multiple access (DS-CDMA) technique in an underwater system using MATLAB. As the result of our review, we recognize that the DS-CDMA technique can be applied to underwater environments.

Audio Data Transmission Based on The Wavelet Transform for ZigBee Applications (ZigBee 응용을 위한 웨이블릿변환 기반 오디오 데이터 전송)

  • Chen, Zhenxing;Choi, Eun Chang;Huh, Jae Doo;Kang, Seog Geun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제2권1호
    • /
    • pp.31-42
    • /
    • 2007
  • A transform coding scheme for the transmission of audio data in ZigBee based wireless personal area networks (WPAN) is presented in this paper. Here, wavelet transform is exploited to encode the features of audio data included mainly in the low frequency region. As a result, it is confirmed that the presented scheme recovers the original audio signals much accurately while it transmits the binary data compressed as 37.5% of the entire data generated without coding scheme. Especially, the mean-squared error between the recovered and original audio data approaches $10^{-4}$ when the signal-to-noise power ratio is sufficiently high. Hence, the presented coding scheme which exploits the wavelet transform is possibly applied for high-quality audio data transmission services in a small-scale sensor network based on ZigBee. Such a result is considered to be applicable as a basic material to update the technical specifications and develop the applications of ZigBee in WPANs.

  • PDF

Proposal of a hierarchical topology and spatial reuse superframe for enhancing throughput of a cluster-based WBAN

  • Hiep, Pham Thanh;Thang, Nguyen Nhu;Sun, Guanghao;Hoang, Nguyen Huy
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.648-657
    • /
    • 2019
  • A cluster topology was proposed with the assumption of zero noise to improve the performance of wireless body area networks (WBANs). However, in WBANs, the transmission power should be reduced as low as possible to avoid the effect of electromagnetic waves on the human body and to extend the lifetime of a battery. Therefore, in this work, we consider a bit error rate for a cluster-based WBAN and analyze the performance of the system while the transmission of sensors and cluster headers (CHs) is controlled. Moreover, a hierarchical topology is proposed for the cluster-based WBAN to further improve the throughput of the system; this proposed system is called as the hierarchical cluster WBAN. The hierarchical cluster WBAN is combined with a transmission control scheme, that is, complete control, spatial reuse superframe, to increase the throughput. The proposed system is analyzed and evaluated based on several factors of the system model, such as signal-to-noise ratio, number of clusters, and number of sensors. The calculation result indicates that the proposed hierarchical cluster WBAN outperforms the cluster-based WBAN in all analyzed scenarios.

Research Trends on Wireless Transmission and Access Technologies Using Deep Learning (딥러닝을 활용한 무선 전송 및 접속 기술 동향)

  • Kim, K.;Myung, J.;Seo, J.
    • Electronics and Telecommunications Trends
    • /
    • 제33권5호
    • /
    • pp.13-23
    • /
    • 2018
  • Deep learning is a promising solution to a number of complex problems based on its inherent capability to approximate almost all types of functions without the demand for handcrafted feature extraction. New wireless transmission and access schemes based on deep learning are being increasingly proposed as substitutes for existing approaches, providing a lower complexity and better performance gain. Among such schemes, a communications system is viewed as an end-to-end autoencoder. The learning process applied in autoencoders can automatically deal with some nonlinear or unknown properties in communications systems. Deep learning can also be used to optimize each processing block for required tasks such as channel decoding, signal detection, and multiple access. On top of recent related research trends, we suggest appropriate research approaches for communications systems to adopt deep learning.

A Study on Welding Carriage using Wireless Communication (무선통신기술을 이용한 용접 캐리지에 관한 연구)

  • Kim, D.W.;Park, J.H.;Nam, J.R.;Heo, T.W.;Shin, D.R.;Shin, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.197-201
    • /
    • 2005
  • In this paper, an automatic welding carriage is developed by wireless communication. In the developed system, a data transmission of a automatic welding line tracking is adopted by RF communication. Additional, a welding condition of the automatic welding carriage IS displayed by microprocessor. Therefore, the developed system can overcome the restriction of an operating distance and perform an accurate transmission of the control signal.

  • PDF

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제24권3호
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.

MIMO Channel Capacity Maximization Using Periodic Circulant Discrete Noise Distribution Signal

  • Poudel, Prasis;Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • 제13권2호
    • /
    • pp.69-75
    • /
    • 2020
  • Multiple Input Multiple Output (MIMO) is one of the important wireless communication technologies. This paper proposes MIMO system capacity enhancement by using convolution of periodic circulating vector signals. This signal represents statistical dependencies between transmission signal with discrete noise and receiver signal with the linear shifting of MIMO channel capacity by positive extents. We examine the channel capacity, outage probability and SNR of MIMO receiver by adding log determinant signal with validated in terms of numerical simulation.