• 제목/요약/키워드: wireless sensor node

검색결과 1,337건 처리시간 0.022초

멀티-홉 무선 센서 네트워크에서 효율적인 패킷 전송 메커니즘 (Efficient Packet Transmission Mechanism for Multi-hop Wireless Sensor Networks)

  • 전준헌;김성철
    • 한국멀티미디어학회논문지
    • /
    • 제18권4호
    • /
    • pp.492-498
    • /
    • 2015
  • In general, data packets from sensor nodes are transferred to the sink node in a wireless sensor networks. So many data packets are gathered around the sink node, resulting in significant packet collision and delay. In this paper, we propose an efficient packet transmission mechanism for multi-hop wireless sensor networks. The proposed mechanism is composed of two modes. One mode works between sink node and 1-hop nodes from sink. In this mode, data packets are transmitted in predefined time slots to reduce collisions. The other mode works between other nodes except sink node. In this mode, duplicated packets from neighbor nodes can be detected and dropped using some control signals. Our numerical analysis and simulation results show that our mechanism outperforms X-MAC and RI-MAC in terms of energy consumption and transmission delay.

무선 센서 네트워크를 위한 클러스터 내 노드 밀도 기반 트랜스포트 프로토콜 (A Robust Transport Protocol Based on Intra-Cluster Node Density for Wireless Sensor Networks)

  • 백철헌;모상만
    • 대한임베디드공학회논문지
    • /
    • 제10권6호
    • /
    • pp.381-390
    • /
    • 2015
  • The efficient design of a transport protocol contributes to energy conservation as well as performance improvement in wireless sensor networks (WSNs). In this paper, a node-density-aware transport protocol (NDTP) for intra-cluster transmissions in WSNs for monitoring physical attributes is proposed, which takes node density into account to mitigate congestion in intra-cluster transmissions. In the proposed NDTP, the maximum active time and queue length of cluster heads are restricted to reduce energy consumption. This is mainly because cluster heads do more works and consume more energy than normal sensor nodes. According to the performance evaluation results, the proposed NDTP outperforms the conventional protocol remarkably in terms of network lifetime, congestion frequency, and packet error rate.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF

무선 센서 네트워크에서 노드 재프로그래밍을 위한 타부 서치 알고리즘 (A Tabu Search Algorithm for Node Reprogramming in Wireless Sensor Networks)

  • 장길웅
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.596-603
    • /
    • 2019
  • 무선 센서 네트워크에서 배치된 노드의 기능을 변경하거나 갱신하기 위해 노드의 소프트웨어 코드를 업데이트하는 재프로그래밍 동작은 필수적이다. 본 논문은 무선 센서 네트워크에서 노드의 재프로그래밍을 목적으로 노드의 전송에너지를 최소화하는 최적화 알고리즘을 제안한다. 또한 네트워크의 수명을 오래 유지하기 위해 전체 노드의 에너지 소모를 균형있게 유지하도록 알고리즘을 설계한다. 본 논문에서는 많은 수의 노드가 배치된 무선 센서 네트워크에서 전송에너지의 최소화와 에너지 소모의 균형화를 위해 새로운 이웃해 생성방식을 가진 타부서치 알고리즘을 제안한다. 제안된 알고리즘은 적정한 수행 시간 내에 최적의 결과를 도출하도록 설계되었다. 제안된 타부서치 알고리즘의 성능은 노드의 전송에너지와 남은 에너지, 알고리즘 수행시간 측면에서 평가되었으며, 성능 평가 결과에서 이전의 방식에 비해 우수한 성능을 보였다.

Development and deployment of large scale wireless sensor network on a long-span bridge

  • Pakzad, Shamim N.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.525-543
    • /
    • 2010
  • Testing and validation processes are critical tasks in developing a new hardware platform based on a new technology. This paper describes a series of experiments to evaluate the performance of a newly developed MEMS-based wireless sensor node as part of a wireless sensor network (WSN). The sensor node consists of a sensor board with four accelerometers, a thermometer and filtering and digitization units, and a MICAz mote for control, local computation and communication. The experiments include calibration and linearity tests for all sensor channels on the sensor boards, dynamic range tests to evaluate their performance when subjected to varying excitation, noise characteristic tests to quantify the noise floor of the sensor board, and temperature tests to study the behavior of the sensors under changing temperature profiles. The paper also describes a large-scale deployment of the WSN on a long-span suspension bridge, which lasted over three months and continuously collected ambient vibration and temperature data on the bridge. Statistical modal properties of a bridge tower are presented and compared with similar estimates from a previous deployment of sensors on the bridge and finite element models.

Interference and Sink Capacity of Wireless CDMA Sensor Networks with Layered Architecture

  • Kang, Hyun-Duk;Hong, Heon-Jin;Sung, Seok-Jin;Kim, Ki-Seon
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.13-20
    • /
    • 2008
  • We evaluate the sink capacity of wireless code division multiple access (CDMA) sensor networks with layered architecture. We introduce a model of interference at a sink considering two kinds of interference: multiple access interference (MAI) and node interference (NI). We also investigate the activity of sensor nodes around the sink in relation to gathering data under a layered architecture. Based on the interference model and the activity of sensor nodes around the sink, we derive the failure probability of the transmission from a source node located one hop away from the sink using Gaussian approximation. Under the requirement of 1% failure probability of transmission, we determine the sink capacity, which is defined as the maximum number of concurrent sensor nodes located one hop away from the sink. We demonstrate that as the node activity of the MAI decreases, the variation of the sink capacity due to the node activity of the NI becomes more significant. The analysis results are verified through computer simulations.

  • PDF

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권10호
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

Energy-balance node-selection algorithm for heterogeneous wireless sensor networks

  • Khan, Imran;Singh, Dhananjay
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.604-612
    • /
    • 2018
  • To solve the problem of unbalanced loads and the short network lifetime of heterogeneous wireless sensor networks, this paper proposes a node-selection algorithm based on energy balance and dynamic adjustment. The spacing and energy of the nodes are calculated according to the proximity to the network nodes and the characteristics of the link structure. The direction factor and the energy-adjustment factor are introduced to optimize the node-selection probability in order to realize the dynamic selection of network nodes. On this basis, the target path is selected by the relevance of the nodes, and nodes with insufficient energy values are excluded in real time by the establishment of the node-selection mechanism, which guarantees the normal operation of the network and a balanced energy consumption. Simulation results show that this algorithm can effectively extend the network lifetime, and it has better stability, higher accuracy, and an enhanced data-receiving rate in sufficient time.

무선 센서 네트워크에서 수집 데이터의 효과적인 전송을 위한 비겹침 다중경로 라우팅 프로토콜 (A Disjoint Multi-path Routing Protocol for Efficient Transmission of Collecting Data in Wireless Sensor Network)

  • 한대만;임재현
    • 정보처리학회논문지C
    • /
    • 제17C권5호
    • /
    • pp.433-440
    • /
    • 2010
  • 무선 센서 네트워크에서 에너지 효율성, 전송 지연 그리고 확장성은 중요한 요구사항이며, 특히 다수의 노드로 구성된 무선 센서 네트워크의 경우 네트워크 라이프타임 연장을 위해 제한된 배터리 전력 내에서 각 노드의 에너지 소비를 최소화 시켜야한다. 또한 전송률을 향상시키기 위해서는 각 센서 노드의 에너지 소비를 최소화하기 위한 효율적인 알고리즘과 에너지 관리 기술이 요구된다. 본 논문은 무선 센서 네트워크 환경에서 센서 데이터 전송을 위해 경로의 겹침이 없는 다중경로 프로토콜을 제안한다. 제안한 방법은 다중경로를 검색하고 라우팅 테이블에 다중경로를 추가시켜 센서 데이터 전송의 감소를 통해 네트워크 오버헤드를 최소화 시킨다. 제안한 라우팅 프로토콜은 각 노드의 에너지 소비를 최소화하고, 싱크 노드가 수신 강도 범위 내, 외부에 위치하더라도 센서 네트워크의 생명주기를 연장할 수 있다. 실제 데이터를 이용하여 현실 모델에 맞게 센서 네트워크를 구축하고 제안 기법의 타당성을 검증하며, 전체 에너지의 소비량을 평가한다.

LOCATION UNCERTAINTY IN ASSET TRACKING USING WIRELESS SENSOR NETWORKS

  • Jo, Jung-Hee;Kim, Kwang-Soo;Lee, Ki-Sung;Kim, Sun-Joong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.357-360
    • /
    • 2007
  • An asset tracking using wireless sensor network is concerned with geographical locations of sensor nodes. The limited size of sensor nodes makes them attractable for tracking service, at the same time their size causes power restrictions, limited computation power, and storage restrictions. Due to such constrained capabilities, the wireless sensor network basically assumes the failure of sensor nodes. This causes a set of concerns in designing asset tracking system on wireless sensor network and one of the most critical factors is location uncertainty of sensor nodes. In this paper, we classify the location uncertainty problem in asset tracking system into following cases. First, sensor node isn't read at all because of sensor node failure, leading to misunderstanding that asset is not present. Second, incorrect location is read due to interference of RSSI, providing unreliable location of asset. We implemented and installed our asset tracking system in a real environment and continuously monitored the status of asset and measured error rate of location of sensor nodes. We present experimental results that demonstrate the location uncertainty problem in asset tracking system using wireless sensor network.

  • PDF