• Title/Summary/Keyword: wireless sensor networks(WSNs)

Search Result 374, Processing Time 0.021 seconds

Efficient Energy Management for a Solar Energy Harvesting Sensor System (태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun;Yoon, Ik-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.478-488
    • /
    • 2009
  • Using solar power in wireless sensor networks (WSNs) requires adaptation to a highly varying energy supply and to a battery constraint. From an application's perspective, however, it is often preferred to operate at a constant quality level as opposed to changing application behavior frequently. Reconciling the varying supply with the fixed demand requires good tools for allocating energy such that average of energy supply is computed and demand is fixed accordingly. In this paper, we propose a probabilistic observation-based model for harvested solar energy. Based on this model, we develop a time-slot-based energy allocation scheme to use the periodically harvested solar energy optimally, while minimizing the variance in energy allocation. We also implement the testbed and demonstrate the efficiency of the approach by using it.

A Hybrid Link Quality Assessment for IEEE802.15.4 based Large-scale Multi-hop Wireless Sensor Networks (IEEE802.15.4 기반 대규모 멀티 홉 무선센서네트워크를 위한 하이브리드 링크 품질 평가 방법)

  • Lee, Sang-Shin;Kim, Joong-Hwan;Kim, Sang-Cheol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.35-42
    • /
    • 2011
  • Link quality assessment is a crucial part of sensor network formation to stably operate large-scale wireless sensor networks (WSNs). A stability of path consisting of several nodes strongly depends on all link quality between pair of consecutive nodes. Thus it is very important to assess the link quality on the stage of building a routing path. In this paper, we present a link quality assessment method, Hybrid Link Quality Metric (HQLM), which uses both of LQI and RSSI from RF chip of sensor nodes to minimize set-up time and energy consumption for network formation. The HQLM not only reduces the time and energy consumption, but also provides complementary cooperation of LQI and RSSI. In order to evaluate the validity and efficiency of the proposed method, we measure PDR (Packet Delivery Rate) by exchanging multiple messages and then, compare PDR to the result of HQLM for evaluation. From the research being carried out, we can conclude that the HQLM performs better than either LQI- or RSSI-based metric in terms of recall, precision, and matching on link quality.

In-network Aggregation Query Processing using the Data-Loss Correction Method in Data-Centric Storage Scheme (데이터 중심 저장 환경에서 소설 데이터 보정 기법을 이용한 인-네트워크 병합 질의 처리)

  • Park, Jun-Ho;Lee, Hyo-Joon;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.315-323
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), various Data-Centric Storages (DCS) schemes have been proposed to store the collected data and to efficiently process a query. A DCS scheme assigns distributed data regions to sensor nodes and stores the collected data to the sensor which is responsible for the data region to process the query efficiently. However, since the whole data stored in a node will be lost when a fault of the node occurs, the accuracy of the query processing becomes low, In this paper, we propose an in-network aggregation query processing method that assures the high accuracy of query result in the case of data loss due to the faults of the nodes in the DCS scheme. When a data loss occurs, the proposed method creates a compensation model for an area of data loss using the linear regression technique and returns the result of the query including the virtual data. It guarantees the query result with high accuracy in spite of the faults of the nodes, To show the superiority of our proposed method, we compare E-KDDCS (KDDCS with the proposed method) with existing DCS schemes without the data-loss correction method. In the result, our proposed method increases accuracy and reduces query processing costs over the existing schemes.

Machine-to-Machine Communications: Architectures, Standards and Applications

  • Chen, Min;Wan, Jiafu;Li, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.480-497
    • /
    • 2012
  • As a new business concept, machine-to-machine (M2M) communications are born from original telemetry technology with the intrinsic features of automatic data transmissions and measurement from remote sources typically by cable or radio. M2M includes a number of technologies that need to be combined in a compatible manner to enable its deployment over a broad market of consumer electronics. In order to provide better understanding for this emerging concept, the correlations among M2M, wireless sensor networks, cyber-physical systems (CPS), and internet of things are first analyzed in this paper. Then, the basic M2M architecture is introduced and the key elements of the architecture are presented. Furthermore, the progress of global M2M standardization is reviewed, and some representative applications (i.e., smart home, smart grid and health care) are given to show that the M2M technologies are gradually utilized to benefit people's life. Finally, a novel M2M system integrating intelligent road with unmanned vehicle is proposed in the form of CPS, and an example of cyber-transportation systems for improving road safety and efficiency are introduced.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

An Experimental Study of the Cochlea-inspired Artificial Filter Bank(CAFB) for Compressed Sensing (압축센싱을 위한 달팽이관 원리기반 인공필터뱅크의 실험적 검증)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.787-797
    • /
    • 2015
  • In this paper, a cochlea-inspired artificial filter bank(CAFB) was developed in order to efficiently acquire dynamic response of structure, and it was also evaluated via dynamic response experiments. To sort out signals containing significant modal information from all the dynamic responses of structure, it was made to adopt a band-pass filter optimizing algorithm(BOA) and a peak-picking algorithm (PPA). Optimally designed on the basis of El-centro and Kobe earthquake signals, it was then embedded into the wireless multi-measurement system(WiMMS). In order to evaluate the performance of the developed CAFB, a vibration test was conducted using the El-centro and Kobe earthquake signals, and structural responses of a two-span bridge were obtained and analyzed simultaneously by both a wired measurement system and a CAFB-based WiMMS. The test results showed that the compressed dynamic responses acquired by the CAFB-based WiMMS matched with those of the wired system, and they included significant modal information of the two-span bridge. Therefore this study showed that the developed CAFB could be used as a new, economic, and efficient measurement device for wireless sensor networks(WSNs) based real time structural health monitoring because it could reconstruct the whole dynamic response using the compressed dynamic response with significant modal information.

Reliable Real-Time Data Dissemination Protocol in Wireless Sensor Networks (무선 센서 망에서 신뢰적 실시간 데이터 전송 프로토콜)

  • Yang, Taehun;Yim, Yongbin;Jung, Kwansoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1567-1576
    • /
    • 2015
  • This paper proposes a reliable real-time data dissemination protocol for mitigating transmission failure of real-time data in WSNs. The re-transmission is well-known for recovery of transmission failure, but this may violate the real-time requirement by transmission delay. To solve this problem, the proposed protocol exploits broadcasting nature and temporal opportunity allocation. In a radio-range of sending node, there may be neighbors satisfying the real-time requirement. The neighbors of specific node could receive data simultaneously by broadcasting, and decide their priority using temporal opportunity allocation method. The method uses time slot and tolerable time. The time slot specifies the priority and transmission deadline for each neighbors, and the tolerable time is the real-time requirement at the sending node. By giving the priority to the node with shorter tolerable time in each slot, we may get more opportunities to forward toward the destination. In other words, even if a node have the longer tolerable time, it still has a chance to forward with the real-time requirement. Simulation results show that the proposed protocol is superior to the existing protocols.

Residual Energy-Aware Duty-Cycle Scheduling Scheme in Energy Harvesting Wireless Sensor Networks (에너지 생산이 가능한 무선 센서 네트워크에서 잔여 에너지 인지 듀티-사이클 스케줄링 기법)

  • Lee, Sungwon;Yoo, Hongseok;Kim, Dongkyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.691-699
    • /
    • 2014
  • In order to increase network lifetime, duty-cycle MAC protocols which can reduce energy consumption caused by idle listening is proposed for WSNs. In common duty-cycle MAC protocols, each sensor node calculates its duty-cycle interval based on the current amount of residual energy. However, in WSNs with the capability of energy harvesting, existing duty-cycle intervals based on the residual energy may cause the sensor nodes which have high energy harvesting rate to suffer unnecessary sleep latency. Therefore, a duty-cycle scheduling scheme which adjust the duty-cycle interval based on both of the residual energy and the energy harvesting rate was proposed in our previous work. However, since this duty-cycle MAC protocol overlooked the performance variation according to the change of duty-cycle interval and adjusted the duty-cycle interval only linearly, the optimal duty-cycle interval could not be obtained to meet application requirements. In this paper, we propose three methods which calculate the duty-cycle interval and analyse their results. Through simulation study, we verify that network lifetime, end-to-end delay and packet delivery ratio can be improved up to 23%, 44% and 31% as compared to the existing linear duty-cycle scheduling method, respectively.

Key Re-distribution Scheme of Dynamic Filtering Utilizing Attack Information for Improving Energy Efficiency in WSNs (무선 센서 네트워크에서 에너지 효율성 향상을 위해 공격정보를 활용한 동적 여과 기법의 키 재분배 기법)

  • Park, Dong-Jin;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • Wireless sensor networks are vulnerable to an adversary due to scarce resources and wireless communication. An adversary can compromise a sensor node and launch a variety of attacks such as false report injection attacks. This attack may cause monetary damage resulting in energy drain by forwarding the false reports and false alarms at the base station. In order to address this problem, a number of en-route filtering schemes has been proposed. Notably, a dynamic en-route filtering scheme can save energy by filtering of the false report. In the key dissemination phase of the existing scheme, the nodes closer to the source node may not have matching keys to detect the false report. Therefore, continuous attacks may result in unnecessary energy wastage. In this paper, we propose a key re-distribution scheme to solve this issue. The proposed scheme early detects the false report injection attacks using initially assigned secret keys in the phase of the key pre-distribution. The experimental results demonstrate the validity of our scheme with energy efficiency of up to 26.63% and filtering capacity up to 15.92% as compared to the existing scheme.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.