• Title/Summary/Keyword: wireless sensor network positioning system

Search Result 43, Processing Time 0.019 seconds

Attitude Determination Technique using Ultrasound and RF Signal (초음파와 RF를 이용한 자세결정)

  • Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Lee, Geon-Woo;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1025-1031
    • /
    • 2007
  • GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.

Fast triangle flip bat algorithm based on curve strategy and rank transformation to improve DV-Hop performance

  • Cai, Xingjuan;Geng, Shaojin;Wang, Penghong;Wang, Lei;Wu, Qidi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5785-5804
    • /
    • 2019
  • The information of localization is a fundamental requirement in wireless sensor network (WSN). The method of distance vector-hop (DV-Hop), a range-free localization algorithm, can locate the ordinary nodes by utilizing the connectivity and multi-hop transmission. However, the error of the estimated distance between the beacon nodes and ordinary nodes is too large. In order to enhance the positioning precision of DV-Hop, fast triangle flip bat algorithm, which is based on curve strategy and rank transformation (FTBA-TCR) is proposed. The rank is introduced to directly select individuals in the population of each generation, which arranges all individuals according to their merits and a threshold is set to get the better solution. To test the algorithm performance, the CEC2013 test suite is used to check out the algorithm's performance. Meanwhile, there are four other algorithms are compared with the proposed algorithm. The results show that our algorithm is greater than other algorithms. And this algorithm is used to enhance the performance of DV-Hop algorithm. The results show that the proposed algorithm receives the lower average localization error and the best performance by comparing with the other algorithms.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.