• Title/Summary/Keyword: wireless sensor network positioning system

Search Result 42, Processing Time 0.023 seconds

Positioning Scheme using Acceleration Factor for Wireless Sensor Networks

  • Park, Na-Yeon;Son, Cheol-Su;Lee, Sung-Jae;Hwang, In-Moon;Kim, Won-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.459-465
    • /
    • 2008
  • Locations of nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times.

Group based DV-Hop localization Algorithm in Wireless Sensor Network (그룹 기반의 DV-HoP 무선 센서네트워크 위치측정 알고리즘)

  • Kim, Hwa-Joong;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.65-75
    • /
    • 2009
  • In Wireless Sensor Network, the sensor node localization is important issue for information tracking, event detection, routing. Generally, in wireless sensor network localization, the absolute positions of certain anchor nodes are required based on the use of global positioning system, then all the other nodes are approximately localized using various algorithms based on a coordinate system of anchor DV-Hop is a localized, distributed, hop by hop positioning algorithm in wireless sensor network where only a limited fraction of nodes have self positioning capability. However, instead of uniformly distributed network, in anisotropic network with possible holes, DV-Hop's performance is very low. To address this issue, we propose Group based DV-Hop (GDV-Hop) algorithm. Best contribution of GDV-Hop is that it performs localization with reduced error compared with DV-Hop in anisotropic network.

The Efficient Computation of Node Position on Mobile Sensor Network (모바일 센서 네트워크에서 효율적인 노드 위치 결정)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • Because mobile sensor network is different with the existing wireless sensor network with fixed nodes, it is more difficult to implement a positioning algorithm in mobile sensor network than in mobile sensor network. In case of fast moving node, a positioning algorithm may be not completed in a given time. In this paper we present the positioning algorithm that improves performance and can complete a computation in time on mobile sensor network.

Efficient Localization in Wireless Sensor Networks (무선 센서 네트워크에서 효율적 측위 기법)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.159-173
    • /
    • 2009
  • Locations of positioned nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times. And this research verifies this technology is excellent in terms of performance, accuracy, and scalability through simulation.

  • PDF

Indoor Positioning System Based on Camera Sensor Network for Mobile Robot Localization in Indoor Environments (실내 환경에서의 이동로봇의 위치추정을 위한 카메라 센서 네트워크 기반의 실내 위치 확인 시스템)

  • Ji, Yonghoon;Yamashita, Atsushi;Asama, Hajime
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.952-959
    • /
    • 2016
  • This paper proposes a novel indoor positioning system (IPS) that uses a calibrated camera sensor network and dense 3D map information. The proposed IPS information is obtained by generating a bird's-eye image from multiple camera images; thus, our proposed IPS can provide accurate position information when objects (e.g., the mobile robot or pedestrians) are detected from multiple camera views. We evaluate the proposed IPS in a real environment with moving objects in a wireless camera sensor network. The results demonstrate that the proposed IPS can provide accurate position information for moving objects. This can improve the localization performance for mobile robot operation.

GPS Accuracy Revision Using RSSI and AoA in Wireless Sensor Network (무선 센서 네트워크에서 RSSI와 AoA를 활용한 GPS 정밀도 향상 방안)

  • Cho, Hae-Min;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.889-896
    • /
    • 2022
  • Data required in a wireless sensor network environment requires more accurate figures as technology advances and its complexity increases. However, in the case of operating a large number of sensor nodes in a large area, the balance between the power consumed and the data quality that can be acquired accordingly should be considered for that purpose. In particular, in complex, densely populated urban areas or military operations with specific goals, location data requires increasingly detailed and high accuracy over a wide range. In this paper, we propose a method of mounting a Global Positioning System(: GPS) only on some of the sensor nodes deployed in the wireless sensor network and improving the error of GPS location data measured on that sensor node through Angle of Arrival(: AoA) and Received Signal Strength Indicator(: RSSI).

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

A Study on the location tracking system by using Zigbee in wireless sensor network (무선 센서네트워크에서 Zigbee를 적용한 위치추정시스템 구현에 관한연구)

  • Jung, Suk;Kim, Hwan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2120-2126
    • /
    • 2010
  • This paper aims to realize the location tracking system using the Zigbee in the wireless sensor network. The wireless sensor network offers the user-oriented location tracking service in the ubiquitous environment. The location tracking service can track the location of an object or a person and provides it. The location tracking system realized in this paper can be used inside or outside without any black-out areas to measure the location of the moving nodes. In tracking inside the RSSI signals use and in tracking outside will connect with the GPS signals to track the location. Also, by using Zigbee, the wireless sensor network environment was established and by obtaining the location of the moving nodes, the real-time tracking is possible.

Application of Sensor Technology for the Efficient Positioningand Assembling of Ship Blocks

  • Lee, Sang-Don;Eun, Seong-Bae;Jung, Jai-Jin;Song, Ha-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.171-176
    • /
    • 2010
  • This paper proposes the application of sensor technology to assemble ship blocks efficiently. A sensor-based monitoring system is designed and implemented to improve shipbuilding productivity by reducing the labor cost for the adjustment of adequate positioning between ship blocks during pre-erection or erection stage. For the real-time remote monitoring of relative distances between two ship blocks, sensor nodes are applied to measure the distances between corresponding target points on the blocks. Highly precise positioning data can be transferred to a monitoring server via wireless network, and analyzed to support the decision making which needs to determine the next construction process; further adjustment or seam welding between the ship blocks. The developed system is expected to put to practical use, and increase the productivity during ship blocks assembly.