• Title/Summary/Keyword: wireless power transmission system

Search Result 529, Processing Time 0.034 seconds

Control Packet Transmission Decision Method for Wearable Sensor Systems (웨어러블 센서 시스템에서의 제어 패킷 전송 결정 기법)

  • Yu, Daeun;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.11-17
    • /
    • 2015
  • In the general transmission power control model that is used for wearable sensor systems, if RSSI value gets out of the Target RSSI Margin, then the sink node finds new transmission power by using TPC(Transmission Power Control) Algorithm. At this time, the sink node sends the control packet to the sensor node for delivering the newly calculated transmission power. However, when the wireless network channel condition is poor, even it is consuming a lot of control packets, the sink node could not find an appropriate transmission power so it only waste of energy. Therefore, we proposed a new control packet transmission decision method that the sink node changes the transmission power when the wireless network channel condition is stabilized. It makes waste of energy decline. In this paper, we apply control packet transmission decision method to Binary TPC algorithms and analyze the results to evaluate the proposed method. We propose three methods that judge the state of wireless network channel. We experiment that methods and analysis the results.

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Efficiency Analysis of Magnetic Resonance Wireless Power Transmission using Superconductor Coil According to the Changing Position of Transmission and Receiving Coils (초전도 코일을 적용한 자기공명방식 무선전력전송의 송·수신 코일 배열에 따른 효율 분석)

  • Kang, Min-Sang;Choi, Hyo-Sang;Jeong, In-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.776-779
    • /
    • 2014
  • In this paper, we analyzed the efficiency of magnetic resonance wireless power transmission (WPT) using superconductor coil according to the changing position of transmission and receiving coils. We implemented a WPT system using a magnetic resonance at a frequency of 63.1 kHz. Transmission and receiving coils using superconductor coil were wound on a spiral manner of diameter 100mm. For comparison, transmission and receiving coils using normal conductor coil were designed under the same condition. At a distance of 50mm, we measured efficiency when transmission-receiving coils were matched 25%, 50%, 75% and 100%. When a superconductor coil was applied to the transmission and receiving units, efficiency of WPT was very high. In addition, in the case of the superconducting transmission-receiving coils, when coils matched 100% the efficiency was 30% and matched 25% the efficiency was 8%.

Analysis of Wireless Power Transfer Characteristics for Multiple Receivers by Time Sharing Technique

  • Park, Jong-Min;Nam, Sang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.183-185
    • /
    • 2011
  • A multiple charging method for a wireless power transfer system (WPTS) in the near-field region is proposed. We analyzed the frequency characteristics of multiple receivers in the near-field region. The results suggested that the time division WPTS can achieve efficient and equal power transmission at multiple receivers. We conclude that this system has an advantage for charging multiple receivers.

Performance Analysis on Wireless Sensor Network using LDPC Codes over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

  • PDF

Performance Evaluation of Transmission Power Control Algorithms in SIR-based Cellular Wireless Networks (SIR 기반의 셀룰러 무선망에서 전송 전력 제어 알고리듬의 성능 비교)

  • Jung, Bo-Hwan;Kim, Moon-Gab
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.64-69
    • /
    • 2009
  • In this paper, we evaluate a performance on a transmission power control algorithm in a SIR-based wireless networks. We consider the existing iterative power control algorithms into a unified dynamic state system formulation in both continuous-time and discrete-time system. Numerical experiments are performed under the disturbance of sinusoidal. These results indicate that the proposed power control scheme has a performance improvement with a better disturbance elimination in wireless mobile systems.

Deep Learning-based UWB Distance Measurement for Wireless Power Transfer of Autonomous Vehicles in Indoor Environment (실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정)

  • Hye-Jung Kim;Yong-ju Park;Seung-Jae Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

Numerical Method for Exposure Assessment of Wireless Power Transmission under Low-Frequency Band

  • Kim, Minhyuk;Park, SangWook;Jung, Hyun-Kyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.442-449
    • /
    • 2016
  • In this paper, an effective numerical analysis method is proposed for calculating dosimetry of the wireless power transfer system operating low-frequency ranges. The finite-difference time-domain (FDTD) method is widely used to analyze bio-electromagnetic field problems, which require high resolution, such as a heterogeneous whole-body voxel human model. However, applying the standard method in the low-frequency band incurs an inordinate number of time steps. We overcome this problem by proposing a modified finite-difference time-domain method which utilizes a quasi-static approximation with the surface equivalence theorem. The analysis results of the simple model by using proposed method are in good agreement with those from a commercial electromagnetic simulator. A simulation of the induced electric fields in a human head voxel model exposed to a wireless power transmission system provides a realistic example of an application of the proposed method. The simulation results of the realistic human model with the proposed method are verified by comparing it with the conventional FDTD method.

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.