• Title/Summary/Keyword: wireless microphone

Search Result 38, Processing Time 0.026 seconds

A Study on Immersive Audio Improvement of FTV using an effective noise (유효 잡음을 활용한 FTV 입체음향 개선방안 연구)

  • Kim, Jong-Un;Cho, Hyun-Seok;Lee, Yoon-Bae;Yeo, Sung-Dae;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.233-238
    • /
    • 2015
  • In this paper, we proposed that immersive audio effect method using the effective noise to improve engagement in free-viewpoint TV(FTV) service. In the basketball court, we monitored the frequency spectrums by acquiring continuous audio data of players and referee using shotgun and wireless microphone. By analyzing this spectrum, in case that users zoomed in, we determined whether it is effective frequency or not. Therefore when users using FTV service zoom in toward the object, it is proposed that we need to utilize unnecessary noise instead of removing that. it will be able to be useful for an immersive audio implementation of FTV.

Multi-channel Unconstrained Heart Rate Monitoring System for Exercising Rehabilitation Patients (재활 훈련중인 환자를 위한 다채널 무구속 심박동수 모니터링 시스템)

  • Cho, J.M.;Choi, J.H.;Park, J.H.;Nam, T.W.;Eun, J.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This research focused on the development of wireless telemetry system that can monitor heart rates of multiple rehabilitation patients in real time without constraint. The whole system consists of the multiple patient's side devices (PSDs) and one central monitoring system (CMS). The PSD consists of a microphone, amplifier, filter, microcontroller, and RF (Radio Frequency) modem. In addition, the PSD was designed to be wearable and low power consumption. The CMS consists of an RF modem and general PC and it was designed to monitor heart rates from multiple patients simultaneously. The system warns an alarm signal when a patient's heart rate exceeds the pre-set range for each patient. This system can be useful to monitor the heart rate of exercising rehabilitation patients and control the patients condition and the exercising level.

Development of Wearable Electro-stethoscope Module for Home-healthcare (홈 헬스케어를 위한 무구속 전자청진 모듈의 개발)

  • Kim, Dong-Jun;Lee, Hyun-Min;Woo, Seung-Jin;Lee, Ju-Shin;Lee, Jeong-Whan;Kim, Kyeong-seop
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.41-47
    • /
    • 2008
  • This paper describes a wearable electro-stethoscope module for home-healthcare system. The module is consisted of a microphone, an instrumentation amplifier, a filter, a power amplifier etc. and is light and small. The phonogram signal from the module shows good performance. The test for the material and size of the sound collector of the chest piece is performed and the results is reflected on the prototype product. If the module is connected to wired or wireless communication network, so people can check their health without going hospital.

  • PDF

HearCAM Embedded Platform Design (히어 캠 임베디드 플랫폼 설계)

  • Hong, Seon Hack;Cho, Kyung Soon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.79-87
    • /
    • 2014
  • In this paper, we implemented the HearCAM platform with Raspberry PI B+ model which is an open source platform. Raspberry PI B+ model consists of dual step-down (buck) power supply with polarity protection circuit and hot-swap protection, Broadcom SoC BCM2835 running at 700MHz, 512MB RAM solered on top of the Broadcom chip, and PI camera serial connector. In this paper, we used the Google speech recognition engine for recognizing the voice characteristics, and implemented the pattern matching with OpenCV software, and extended the functionality of speech ability with SVOX TTS(Text-to-speech) as the matching result talking to the microphone of users. And therefore we implemented the functions of the HearCAM for identifying the voice and pattern characteristics of target image scanning with PI camera with gathering the temperature sensor data under IoT environment. we implemented the speech recognition, pattern matching, and temperature sensor data logging with Wi-Fi wireless communication. And then we directly designed and made the shape of HearCAM with 3D printing technology.

Common Spectrum Assignment for low power Devices for Wireless Audio Microphone (WPAN용 디지털 음향기기 및 통신기기간 스펙트럼 상호운용을 위한 채널 할당기술에 관한 연구)

  • Kim, Seong-Kweon;Cha, Jae-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.724-729
    • /
    • 2008
  • This paper presents the calculation of the required bandwidth of common frequency bandwidth applying queueing theory for maximizing the efficiency of frequency resource of WPAN(Wireless Personal Area Network) based Digital acoustic and communication devices. It assumed that LBT device(ZigBee) and FH devices (DCP, RFID and Bluetooth) coexist in the common frequency band for WPAN based Digital acoustic and communication devices. Frequency hopping (FH) and listen before talk (LBT) have been used for interference avoidance in the short range device (SRD). The LBT system transmits data after searching for usable frequency bandwidth in the radio wave environment. However, the FH system transmits data without searching for usable frequency bandwidth. The queuing theory is employed to model the FH and LBT system, respectively. As a result, the throughput for each channel was analyzed by processing the usage frequency and the interval of service time for each channel statistically. When common frequency bandwidth is shared with SRD using 250mW, it was known that about 35 channels were required at the condition of throughput 84%, which was determined with the input condition of Gaussian distribution implying safety communication. Therefore, the common frequency bandwidth is estimated with multiplying the number of channel by the bandwidth per channel. These methodology will be useful for the efficient usage of frequency bandwidth.

Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing (청각 장애인용 홈 모니터링 시스템을 위한 다채널 다중 스케일 신경망 기반의 사운드 이벤트 검출)

  • Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.600-605
    • /
    • 2020
  • In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired.

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

Analysis and Technical Consideration for the Rules on Television White Space (TVWS 대역 규정에 관한 분석 및 기술적 고려)

  • Kim, Young-Soo;Cho, Sang-In;Jeong, Byung-Jang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.923-933
    • /
    • 2012
  • In this paper, we propose the technical considerations for the rules on television white space(TVWS), that becomes a center of public notice, in terms of incumbent services protection, technical requirements of television band devices (TVBDs) and administration of TV band databases. The basic idea behind the proposed method is based on the perfect protection of incumbent services such as digital television and wireless microphone. It has been found that FCC's approach has the advantage that a list of available channels and transmission power are provided for TVBDs faster than Ofcom's approach that requires DB to perform the algorithm for determining frequencies and transmission power for TVBDs everytime DB is asked from TVBDs.