• Title/Summary/Keyword: wireless mesh network

Search Result 278, Processing Time 0.022 seconds

Handoff Algorithm based on One-way Trip Time for Wireless Mesh Network (Wireless Mesh Network을 위한 OTT 기반 핸드오프 알고리즘)

  • Park, Cha-Hee;Yoo, Myung-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.16-24
    • /
    • 2007
  • Wireless mesh network extends the limited coverage of conventional wireless service from one-hop access point to wider area. It is recognized as an important issue to provide seamless handoff in the wide coverage of wireless mesh network. A long handoff delay may cause high packet loss and disconnection of service, degrading the network performance. The handoff delay is mainly introduced from the channel scanning process obtaining information to make handoff decision and the unnecessary handoffs due to inaccurate handoff decision. In this paper, we propose the handoff algorithm based on one-way trip time (OTT) to expedite the handoff procedure. As compared to the handoff algorithm based on the receiving signal power, the proposed algorithm takes advantage of OTT to obtain the necessary handoff information in a relatively shorter time and reduce the unnecessary handoffs. The performance of proposed algorithm is evaluated through the simulations. It is verified that the proposed handoff algorithm can effectively enhance the handoff accuracy, and therefore reduce the handoff delay and unnecessary handoffs.

An adaptive MAC protocol exploiting multiple paths in wireless mesh networks

  • Lee, Hyung-Keun;Yi, Joon-Hwan
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.94-100
    • /
    • 2009
  • In recent years, the wireless mesh network (WMN) has been an emerging technology to provide Internet access to fixed and mobile wireless devices. The main goal of this paper is the design and simulation of a new MAC protocol based on the multi-path routing information for wireless mesh networks. The information about multiple paths discovered in the network layer is exploited by the MAC layer in order to forward a frame over the best hop out of multiple hop choices. The performance of our approach is compared with conventional 802.11 MAC through the simulation. The results show that our scheme exhibits a significantly better performance rather than conventional 802.11 MAC protocol in terms of packet overhead, end-to-end throughput and delay.

  • PDF

A Priority Time Scheduling Method for Avoiding Gateway Bottleneck in Wireless Mesh Networks (무선 메쉬 네트워크에서 게이트웨이 병목 회피를 위한 우선순위 타임 스케줄링 기법)

  • Ryu, Min Woo;Kim, Dae Young;Cha, Si Ho;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • In existing wireless ad-hoc networks, how to distribute network resources fairly between many users to optimize data transmission is an important research subject. However, in wireless mesh networks (WMNs), it is one of the research areas to avoid gateway bottleneck more than the fair network resource sharing. It is because WMN traffic are concentrated on the gateway connected to backhaul. To solve this problem, the paper proposes Weighted Fairness Time-sharing Access (WFTA). The proposed WFTA is a priority time scheduling scheme based on Weighted Fair Queuing (WFQ).

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

Distributed Rate and Congestion Control for Wireless Mesh Networks

  • Quang, Bui Dang;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.916-922
    • /
    • 2007
  • Wireless networks (WNs) are developed and applied widely in a lot of areas. Now, a new generation of wireless networks is coming, and that is Wireless Mesh Network (WMN). At present, there are not so many researches which deal on this area. Most researches are derived from Mobile Ad hoc Networks (MANET) and WNs. In WMNs, there are some applications that require real-time delivery. To guarantee this, rate control and congestion control are needed. This problem leads to optimization issue in transport layer. In this paper, we propose a mathematical model which is applied in rate and congestion control in WNMs. From this model, we optimize rate and congestion control in WMNs by maximizing network utility. The proposed algorithm is implemented in distributed way both in links and sources.

MA(Mesh Adaptive)-CBRP Algorithm for Wireless Mesh Network (Wireless Mesh Network를 위한 MA(Mesh Adaptive)-CBRP 알고리즘의 제안)

  • Kim, Sung-Joon;Cho, Gyu-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1607-1617
    • /
    • 2010
  • In this paper we propose MA-CBRP, mesh adaptive algorithm for wireless mesh networks. MA-CBRP is a hybrid algorithm based on ad-hoc CBRP protocol. In MA-CBRP, the mesh router periodically sends the ANN message as like Hello-message in CBRP. ANN message allows to all clients periodically store a route towards the mesh-router and renewal information in their routing cache. While CBRP periodically reply Hello-message, MA-CBRP does not reply to achieve less overhead. After receiving ANN message, mesh client send JOIN message to mesh router when the route towards mesh router changed. at the same time Register the entry to mesh router, it can achieve to reduce overhead of control the route and shorten the time to find route. consequently, MA-CBRP shows 7% reduced overhead and shortened time to find route than CBRP with regardless of clients number.

PCISS Scheme for Minimize Prove Delay in Wireless Mesh Networks (무선 메쉬 네트워크 환경에서 프로브 지연을 최소화한 PCISS 기법)

  • Cho, Young-Bok;Lee, Sang-Ho
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • Recently Wireless Communication technologies are widely used in Small And Medium Business fields. Wireless mesh networks have been studied as the next generation technology to solve problem of conventional wireless networks. Wireless mesh network uses a 802.11 when make up of network. mesh clients occurs Hard handover moving between ones. This increases the handover latency of the network mobility is a very great issues. Consequently, this paper propose a channel information previously methods to reduce the handover latency selective channels. Proposed scheme accounts for more than 90% of the probe delay to minimize the client had to move the mesh based on the old channel to retrieve information. Through simulation, the proposed scheme had shorter handover delay time than transitional full scan and selective scan. Through results of evaluation, the suggest PCISS scheme more fast 6.5% than transitional scheme.

  • PDF

A Channel Assignment Technique for OFDMA-based Wireless Mesh Network with Different Time Delays (서로 다른 지연 시간을 갖는 OFDMA 기반 Wireless Mesh Network에서의 채널 할당 기법)

  • Yoo, Hyun-Il;Park, Chang-Hwan;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.568-576
    • /
    • 2011
  • In this paper, a channel assignment technique to mitigate interferences due to ISI(Inter Symbol Interference) and ICI(Inter Carrier Interference) caused by TDoA(Time Difference of Arrival) among distributed MRs(Mesh Routers) in OFDMA(Orthogonal Frequency Division Multiple Access)-based WMN(Wireless Mesh Network) is proposed. The SINR(Signal to Interference and Noise Ratio) associated with the channel assignment for each MR is defined to minimize the effect of ISI and ICI due to TDoA in WMN, which is then used to propose an channel assignment technique considering fairness constraint. It is verified by computer simulation that the proposed channel assignment technique can improve the performance of BER(Bit Error Rate) in WMNs with compared to the conventional technique.

Load Balancing and Mobility Management in Multi-homed Wireless Mesh Networks

  • Tran, Minh Tri;Kim, Young-Han;Lee, Jae-Hwoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.959-975
    • /
    • 2011
  • Wireless mesh networks enlarge the wireless coverage area by interconnecting relatively stationary wireless routers (mesh routers). As wireless mesh networks are envisioned to provide high-bandwidth broadband Internet service to a large community of users, the Internet gateway, which acts as a central point of Internet attachment for the mesh networks, is likely to suffer heavily from the scramble for shared wireless resources because of aggregated traffic toward the Internet. It causes performance decrement on end-to-end transmissions. We propose a scheme to balance the load in a mesh network based on link quality variation to different Internet gateways. Moreover, under the mesh coverage, mobile nodes can move around and connect to nearby mesh routers while still keeping the connections to the Internet through the best gateway in terms of link quality. In this structure, gateways perform the balancing procedure through wired links. Information about gateways and mobile node's location is distributed appropriately so that every mesh router can quickly recognize the best gateway as well as the positions of mobile nodes. This distributed information assists mobile nodes to perform fast handoff. Significant benefits are shown by the performance analysis.

Dual Coalescent Energy-Efficient Algorithm for Wireless Mesh Networks

  • Que, Ma. Victoria;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.760-769
    • /
    • 2007
  • In this paper, we consider a group mobility model to formulate a clustering mechanism called Dual Coalescent Energy-Efficient Algorithm (DCEE) which is scalable, distributed and energy-efficient for wireless mesh network. The differences of the network nodes will be distinguished to exploit heterogeneity of the network. Furthermore, a topology control, that is, adjusting the transmission range to further reduce power consumption will be integrated with the cluster formation to improve network lifetime and connectivity. Along with network lifetime and power consumption, clusterhead changes will be measured as a performance metric to evaluate the. effectiveness and robustness of the algorithm.

  • PDF