• Title/Summary/Keyword: wireless large-scale network

Search Result 117, Processing Time 0.028 seconds

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Design of Stochastic Movement Model Considering Sensor Node Reliability and Energy Efficiency

  • Cho, Do-Hyeoun;Yeol, Yun Dai;Hwang, Chi-Gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.156-162
    • /
    • 2020
  • Wireless Sensor Network (WSN) field is mainly studied to monitor and characterize large-scale physical environments to track various environmental or physical conditions, such as temperature, pressure, wind speed and humidity. WSN can be used in various applications such as wild surveillance, military target tracking and monitoring, dangerous environmental exploration and natural disaster relief. We design probabilistic mobile models that apply to mobile ad hoc network mobile environments. A probabilistic shift model proposed by dividing the number of moving nodes and the distance of travel into two categories to express node movement characteristics. The proposed model of movement through simulation was compared with the existing random movement model, ensuring that the width and variation rate of the first node node node node (FND) was stable regardless of the node movement rate. In addition, when the proposed mobile model is applied to the routing protocol, the superiority of network life can be verified from measured FND values. We overcame the limitations of the existing random movement model, showing excellent characteristics in terms of energy efficiency and stable in terms of changes in node movement.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

A Software Framework for Verifying Sensor Network Operations and Sensing Algorithms (센서네트워크 동작 및 센싱 알고리즘 검증을 위한 소프트웨어 프레임워크)

  • Yoo, Seong-Eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • Most of sensor networks are difficult to be debugged, verified, and upgraded once they are deployed in the fields, for they are usually deployed in real world and large scale. Therefore, before deploying the sensor networks, we should test and verify them sufficiently in realistic testbeds. However, since we need to control physical environments which interact with sensor networks, it takes much of time and cost to test and verify sensor networks at the level of resource-constrained sensor nodes in such environments. This paper proposes an efficient software framework for evaluating and verifying sensor networks in the view points of network and application operations (i.e., accuracy of sensing algorithms). Applying the proposed software framework to the development of a simulator for a smart parking application based on wireless sensor network, this paper verifies the feasibility of the proposed framework.

GEOP : A Security Aware Multipath Routing Protocol (GEOP : 보안 인식 다중경로 라우팅 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • Rapid technological advances in the area of micro electro-mechanical systems (MEMS) have spurred the development of small inexpensive sensors capable of intelligent sensing. A significant amount of research has been done in the area of connecting large numbers of these sensors to create robust and scalable Wireless Sensor Networks (WSNs). The resource scarcity, ad-hoc deployment, and immense scale of WSNs make secure communication a particularly challenging problem. Since the primary consideration for sensor networks is energy efficiency, security schemes must balance their security features against the communication and computational overhead required to implement them. In this paper, we combine location information and probability to create a new security aware multipath geographic routing protocol. The implemented result in network simulator (ns-2) showed that our protocol has a better performance under attacks.

Construction of wireless sensor network for structural health monitoring of large-scale buildings (대형 건물의 구조 건전도 모니터링을 위한 무선 센서 네트워크 구성)

  • Lee, Hong-Min;Kim, Jong-Moon;Hong, Jung-Bum;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.221-224
    • /
    • 2009
  • 최근 사회기반시설을 대상으로 900 MHz - 2.45 GHz 대역의 무선 센서 네트워크 시스템을 이용한 구조반응 모니터링 연구가 수행되고 있다. 건물의 경우 수직, 수평으로 구조 부재, 칸막이 벽, 외장재 등에 의해서 공간이 차단되어 있고, 전파 간섭의 영향이 상대적으로 크기 때문에 900 MHz - 2.4 GHz 대역의 무선 네트워크 시스템은 그 한계가 있다. 본 논문에서는 이러한 문제점을 고려하여 장애물에 대한 회절성이 뛰어나고 전파의 간섭이 상대적으로 작은 저주파 대역의 무선 라디오 주파수를 도입한다. 이로부터 특히 지진 또는 바람의 영향 등의 외부 하중에 의하여 대규모 인명 손실을 초래할 수 있는 중요도가 매우 높은 대형 건물을 대상으로 실제 적용이 가능한 무선 센서 네트워크를 구성해 보았다.

  • PDF

Network Coding-based Delay Reduction for Voice Traffic in Large-scale Wireless Sensor Networks (대규모 무선 센서네트워크에서 네트워크 코딩 기반의 음성 트래픽을 위한 딜레이 감소 방안)

  • Kim, Kyoung-Hwan;Joe, In-Whee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.438-442
    • /
    • 2010
  • 무선 센서 네트워크 기술이 발전됨에 따라 소규모 무선 센서 네트워크에서 대규모 무선 센서 네트워크로 변하고 있으며, 이로 인하여 대규모 무선 센서 네트워크를 효율적으로 관리하기 위하여 여러 연구가 진행되고 있다. 본 논문에서는 대규모 무선 센서 네트워크를 효율적으로 관리하는 클러스터 기법을 사용한다. 또한 음성 정보를 전송하기 위해 네트워크 코딩 기법을 사용하여 수집된 자료를 목표지점까지 전달하는데 걸리는 딜레이 시간을 줄이는 방법을 제안한다.

  • PDF

Non-Linear Error Identifier Algorithm for Configuring Mobile Sensor Robot

  • Rajaram., P;Prakasam., P
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1201-1211
    • /
    • 2015
  • WSN acts as an effective tool for tracking the large scale environments. In such environment, the battery life of the sensor networks is limited due to collection of the data, usage of sensing, computation and communication. To resolve this, a mobile robot is presented to identify the data present in the partitioned sensor networks and passed onto the sink. In novel data collection algorithm, the performance of the data collecting operation is reduced because mobile robot can be used only within the limited range. To enhance the data collection in a changing environment, Non Linear Error Identifier (NLEI) algorithm has been developed and presented in this paper to configure the robot by means of error models which are non-linear. Experimental evaluation has been conducted to estimate the performance of the proposed NLEI and it has been observed that the proposed NLEI algorithm increases the error correction rate upto 42% and efficiency upto 60%.

Design of a Service Broker for Large Scale Connections to Support Pubsub QoS between TOS and Mobile Devices (TOS와 Mobile device 간의 펍섭 QoS를 지원하는 대량 커넥션 서비스 브로커 설계)

  • Jeon, Young-Jun;Hwang, Hee-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.137-142
    • /
    • 2016
  • A two-step open system(TOS) was proposed to relay between a healing platform and a repository of personal health documents. TOS was designed by taking into consideration the pubsub service based on large scale connections to monitor a provider's access/request process for health documents in real time. TOS, however, uses WebSocket as a communication protocol in case of pubsub. Given the operational environment of low quality wireless networks for mobile devices that are user terminals in a healing platform, there is a need to add a messaging protocol to support QoS as well as a transmission protocol. As a light messaging protocol optimized for mobile devices, MQTT defines reliable messaging QoS to consider a wireless network situation of low speed/low quality. This study designed an MQTT protocol-based message broker to support QoS in case of large scale connections and pubsub by taking into consideration mobile devices that are user terminals in a healing platform. After designing a model between TOS and MQTT message broker, the study implemented a prototype based on the proposed design and compared it with its counterparts from previous studies based on the performance indicators in a load-test with the MQTT client tool.

A Hybrid Link Quality Assessment for IEEE802.15.4 based Large-scale Multi-hop Wireless Sensor Networks (IEEE802.15.4 기반 대규모 멀티 홉 무선센서네트워크를 위한 하이브리드 링크 품질 평가 방법)

  • Lee, Sang-Shin;Kim, Joong-Hwan;Kim, Sang-Cheol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.35-42
    • /
    • 2011
  • Link quality assessment is a crucial part of sensor network formation to stably operate large-scale wireless sensor networks (WSNs). A stability of path consisting of several nodes strongly depends on all link quality between pair of consecutive nodes. Thus it is very important to assess the link quality on the stage of building a routing path. In this paper, we present a link quality assessment method, Hybrid Link Quality Metric (HQLM), which uses both of LQI and RSSI from RF chip of sensor nodes to minimize set-up time and energy consumption for network formation. The HQLM not only reduces the time and energy consumption, but also provides complementary cooperation of LQI and RSSI. In order to evaluate the validity and efficiency of the proposed method, we measure PDR (Packet Delivery Rate) by exchanging multiple messages and then, compare PDR to the result of HQLM for evaluation. From the research being carried out, we can conclude that the HQLM performs better than either LQI- or RSSI-based metric in terms of recall, precision, and matching on link quality.