• Title/Summary/Keyword: wireless large-scale network

Search Result 117, Processing Time 0.031 seconds

A Congestion Control Scheme Considering Traffic in Large-Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 트래픽을 고려한 혼잡제어)

  • Kwak, Moon-Sang;Hong, Young Sik
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • Large-scale wireless sensor networks are constructed by using a large number of sensor nodes that are non-uniformly deployed over a wide area. As a result, the data collected by the sensor nodes are similar to that from one another since a high density of the sensor nodes may cause an overlap. As a result of the characteristics of the traffic, data is collected from a plurality of sensor nodes by a sink node, and when the sensor nodes transmit their collected data to the sink node, the sensor nodes around the sink node have a higher amount of traffic than the sensor nodes far away from the sink node. Thus, the former sensor encounter bottlenecks due to traffic congestion and have an energy hole problem more often than the latter ones, increasing energy consumption. This paper proposes a congestion control scheme that considers traffic flows in order to control traffic congestion of the sensor nodes that are non-uniformly deployed over a large-scale wireless sensor network.

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

Interference-free Clustering Protocol for Large-Scale and Dense Wireless Sensor Networks

  • Chen, Zhihong;Lin, Hai;Wang, Lusheng;Zhao, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1238-1259
    • /
    • 2019
  • Saving energy is a big challenge for Wireless Sensor Networks (WSNs), which becomes even more critical in large-scale WSNs. Most energy waste is communication related, such as collision, overhearing and idle listening, so the schedule-based access which can avoid these wastes is preferred for WSNs. On the other hand, clustering technique is considered as the most promising solution for topology management in WSNs. Hence, providing interference-free clustering is vital for WSNs, especially for large-scale WSNs. However, schedule management in cluster-based networks is never a trivial work, since it requires inter-cluster cooperation. In this paper, we propose a clustering method, called Interference-Free Clustering Protocol (IFCP), to partition a WSN into interference-free clusters, making timeslot management much easier to achieve. Moreover, we model the clustering problem as a multi-objective optimization issue and use non-dominated sorting genetic algorithm II to solve it. Our proposal is finally compared with two adaptive clustering methods, HEED-CSMA and HEED-BMA, demonstrating that it achieves the good performance in terms of delay, packet delivery ratio, and energy consumption.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

The Optimum Configuration of Vehicle Parking Guide System based on Ad Hoc Wireless Sensor Network

  • Lim, Myoung-Seob;Xu, Yihu;Lee, Chung-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.199-203
    • /
    • 2011
  • The wireless sensor network (WSN) based on ad hoc network is applied to vehicle parking guide system without parking guide man at area or building with large scale of parking lots. The optimum number of cluster heads was derived for getting the minimum power consumption as well as time delay. Through the theoretical analysis of power consumption and time delay with the number of cluster heads in wireless sensor network, it was found that there exists the minimum point in the variation of power consumption and time delay according to the number of cluster heads.

Node Distribution-Based Localization for Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 노드 분포를 고려한 분산 위치 인식 기법 및 구현)

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Park, Jong-Jun;Park, Sang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.832-844
    • /
    • 2008
  • Distributed localization algorithms are necessary for large-scale wireless sensor network applications. In this paper, we introduce an efficient node distribution based localization algorithm that emphasizes simple refinement and low system load for low-cost and low-rate wireless sensors. Each node adaptively chooses neighbor nodes for sensors, update its position estimate by minimizing a local cost function and then passes this update to the neighbor nodes. The update process considers a distribution of nodes for large-scale networks which have same density in a unit area for optimizing the system performance. Neighbor nodes are selected within a range which provides the smallest received signal strength error based on the real experiments. MATLAB simulation showed that the proposed algorithm is more accurate than trilateration and les complex than multidimensional scaling. The implementation on MicaZ using TinyOS-2.x confirmed the practicality of the proposed algorithm.

Reinforcement Learning for Node-disjoint Path Problem in Wireless Ad-hoc Networks (무선 애드혹 네트워크에서 노드분리 경로문제를 위한 강화학습)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.1011-1017
    • /
    • 2019
  • This paper proposes reinforcement learning to solve the node-disjoint path problem which establishes multipath for reliable data transmission in wireless ad-hoc networks. The node-disjoint path problem is a problem of determining a plurality of paths so that the intermediate nodes do not overlap between the source and the destination. In this paper, we propose an optimization method considering transmission distance in a large-scale wireless ad-hoc network using Q-learning in reinforcement learning, one of machine learning. Especially, in order to solve the node-disjoint path problem in a large-scale wireless ad-hoc network, a large amount of computation is required, but the proposed reinforcement learning efficiently obtains appropriate results by learning the path. The performance of the proposed reinforcement learning is evaluated from the viewpoint of transmission distance to establish two node-disjoint paths. From the evaluation results, it showed better performance in the transmission distance compared with the conventional simulated annealing.

Analyses of Characteristics of U-Healthcare System Based on Wireless Communication

  • Kim, Jung Tae
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.337-342
    • /
    • 2012
  • The medical industries are integrated with information technology with mobile devices and wireless communication. The advent of mobile healthcare systems can benefit patients and hospitals, by not only providing better quality of patient care, but also by reducing administrative and medical costs for both patients and hospitals. Security issues present an interesting research topic in wireless and pervasive healthcare networks. As information technology is developed, many organizations such as government agencies, public institutions, and corporations have employed an information system to enhance the efficiency of their work processes. For the past few years, healthcare organizations throughout the world have been adopting health information systems (HIS) based on the wireless network infrastructure. As a part of the wireless network, a mobile agent has been employed at a large scale in hospitals due to its outstanding mobility. Several vulnerabilities and security requirements related to mobile devices should be considered in implementing mobile services in the hospital environment. Secure authentication and protocols with a mobile agent for applying ubiquitous sensor networks in a healthcare system environment is proposed and analyzed in this paper.