• Title/Summary/Keyword: wireless environmental monitoring

Search Result 222, Processing Time 0.029 seconds

Application for Disaster Prediction of Reservoir Dam Wireless Sensor Network System based on Field Trial Construction (현장 시험시공을 통한 저수지 댐의 재해예측 무선센서 네트워크 시스템 적용성 평가)

  • Yoo, Chanho;Kim, Seungwook;Baek, Seungcheol;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2019
  • In this present study, to evaluate the applicability of the monitoring system of the entire reservoir dam facility using the wireless sensor network system and a section representative of the domestic reservoir dam was selected as the test bed site and to operated a system that can evaluate the condition of the facility at the real time with monitoring. In order to set up a wireless sensor network system, the system assessment of present state was carried out for confirmation the risk factors and the limit values of the risk factors in limit state were calculated. The type and position of the sensor to be measured in the field were determined by setting the measurement items suitable for the hazardous area and the risk factor. In this paper, we evaluated the feasibility of the system by monitoring and constructing a wireless sensor network system in a field for a fill dam that can represent a domestic reservoir dam. Applicability evaluation was verified by comparing directly with the measurement of partial concentration method which is the measurement management technology of the dam.

A Development of Smart Monitoring Technique for Photovoltaic Power Systems (태양광 발전 시스템의 스마트 모니터링 기술개발)

  • Cho, Hyun Cheol;Sim, Kwang Yeal
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.50-56
    • /
    • 2015
  • This paper presents a smart monitoring technique for photovoltaic power systems by using wire and wireless communication networks in which the RS-232/484 and the Zigbee communication networks are inherently established respectively. In the proposed monitoring systems, environmental data sequences and the output power measured by sensors in photovoltaic systems are transferred to PC systems via two communication networks. We made electronic hardware boards for sensors and communication networks to construct its real-time monitoring system and carry out experiments for demonstrating reliability of the proposed monitoring system.

Implementation of Greenhouse Environment Monitoring System based on Wireless Sensor Networks (무선센서네트워크 기반 온실환경 모니터링 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2686-2692
    • /
    • 2013
  • In this paper, various growth environment data collecting and monitoring based on wireless sensor network for greenhouse environmental monitoring system is designed and implemented. In addition, greenhouse control system is proposed to integrated control and management in internal environment and greenhouse facilities. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on wireless sensor network. Graphical user interface for an integrated management system is designed based on the HMI and the experimental results show that the sensor data were collected by integrated management in real-time.

Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring

  • Man, S.H.;Chang, C.C.;Hassan, M.;Bermak, A.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1543-1567
    • /
    • 2015
  • In this study, a wireless crack sensor is developed for monitoring cracks propagating in two dimensions. This sensor is developed by incorporating a laser-based optical navigation sensor board (ADNS-9500) into a smart wireless platform (Imote2). To measure crack propagation, the Imote2 sends a signal to the ADNS-9500 to collect a sequence of images reflected from the concrete surface. These acquired images can be processed in the ADNS-9500 directly (the navigation mode) or sent to Imote2 for processing (the frame capture mode). The computed crack displacement can then be transmitted wirelessly to a base station. The design and the construction of this sensor are reported herein followed by some calibration tests on one prototype sensor. Test results show that the sensor can provide sub-millimeter accuracy under sinusoidal and step movement. Also, the two modes of operation offer complementary performance as the navigation mode is more accurate in tracking large amplitude and fast crack movement while the frame capture mode is more accurate for small and slow crack movement. These results illustrate the feasibility of developing such a crack sensor as well as point out directions of further research before its actual implementation.

Effective Range Evaluation of Wireless Monitoring System for Monopile (모노파일용 원거리 무선 모니터링 시스템의 유효거리 평가)

  • Park, Kiwon;Lee, Jong-Sub;Choi, Changho;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.91-100
    • /
    • 2012
  • Wireless monitoring system for the structural health evaluation has a limit to the reliability of measured response. The objective of this study is to evaluate an effective measurement range of the wireless monitoring system on the analyzed data. For the wireless monitoring system, Bluetooth and Wi-Fi are applied to datalogger-receiver and receiver-personal computer, respectively. For the model of the monopile structure response, a laboratory-scale monopile is manufactured with Mono Cast Nylon and a lateral loading is applied by hammer impacting. Strain gauges attached on the model monopile are connected with the datalogger. The distances of datalogger-receiver and receiver-personal computer are changed for the evaluation of the measurement range. Experimental results show that the receiving rates of the response remain almost constant within limited distance, while the receiving rates dramatically decrease out of effective range. In addition, the receiving rates affect on the measured natural frequencies of the model monopile. This study suggests that the effective range evaluation of the wireless monitoring system may be used for the determination of a monitoring distance to the monopile installed in the offshore wind farm.

Review of Environmental Monitoring and Communication System in Underground Mines Using Wireless Sensor Network (무선센서 네트워크를 이용한 지하광산 내 환경 모니터링과 통신 시스템의 연구 동향 분석 및 고찰)

  • Lee, Seungjun;Park, Yohan;Lee, Hakkyung;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.209-231
    • /
    • 2018
  • Severe mine disasters have continued to occur around the world. To ensure worker's health and safety and enhance the productivity, a number of studies have been conducted for the development of wireless sensor network (WSN), environmental monitoring, and communication system in underground mines. An increase in development and application of these systems has just begun with the introduction of information and communication technology into the mining industry in Korea, and yet there have been only a few studies that considered the underground mine ventilation system. This study presented the literature review on the development of WSN and environmental monitoring in underground mines, and especially, on 7 subjects in terms of underground mine ventilation. Moreover, studies that especially conducted real-time environmental monitoring were reviewed and categorized by each commercial software commonly utilized for the ventilation network analysis. For the application in domestic underground mines, further issues were discussed regarding research subjects that may be needed in the future and domestic environmental standards that has been used in the underground mine operation. This paper is expected to be useful for the development of WSN-based environmental monitoring and communication system, as well as for related studies in the future.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

Basic Study on Monitoring System of Reservoir and Leeve Using Wireless Sensor Network (무선센서 네트워크 계측을 이용한 저수지 및 제방 계측시스템 구축에 관한 기초연구)

  • Yoo, Chanho;Kim, IkHoon;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2018
  • Conventional monitoring method is used for evaluation of the reservoir and levee at the highest height sections. In recent years, automated measurement technology has been developed, and the measurement results are transmitted, collected and stored in real time into management office. Despite the development of real time monitoring technology, the measurement results are not used directly or indirectly with facility management at real time. Recently, as wireless sensor network measurement technology has been developed based on internet of things, this study proposed a real - time measurement and evaluation system based on wireless sensor network technology in the reservoir structure. As a result of the seepage analysis for the application, it was confirmed that the volumetric water content changes together with the change of the seepage line inside the embankment body according to the change of the water level of the embankment. In other words, the applicability of the measurement system with the volumetric water ratio set as the sensor node was verified.

Wireless Sensor Networks based Forest Fire Surveillance System

  • Son, Byung-Rak;Kim, Jung-Gyu
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • Wireless Sensor Networks will revolutionize applications such as environmental monitoring, home automation, and logistics. We developed forest fire surveillance system. In this paper, Considering the fact that in Korea, during November to May, forest fires occur very frequently causing catastrophic damages on the valuable environment, Although exists other forest fire surveillance system such as surveillance camera tower, infrared ray sensor system and satellite system. Preexistence surveillance system can't real-time surveillance, monitoring, database and automatic alarm. But, forest fire surveillance system(FFSS) support above. In this paper, we describes a system development approach for a wireless sensor network based FFSS that is to be used to measure temperature and humidity as well as being fitted with a smoke detector. Such a device can be used as an early warning fire detection system and real-time surveillance in the area of a bush fire or endangered public infrastructure. Once the system has being development, a mesh network topology will be implemented with the chosen sensor node with the aim of developing a sophisticated mesh network.

  • PDF

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.