• 제목/요약/키워드: wireless condition monitoring

검색결과 137건 처리시간 0.032초

실내환경 모니터링시스템을 위한 무선 센서네트워크에서의 플러딩 방식의 질의모델 설계 및 구현 (Design and implementation of flooding-based query model in wireless sensor networks for indoor environmental monitoring system)

  • 이승철;정상중;이영동;정완영
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.168-177
    • /
    • 2008
  • An indoor environmental monitoring system using IEEE 802.15.4 based wireless sensor network is proposed to monitor the amount of pollutant entering to the room from outside and also the amount of pollutant that is generated in indoor by the building materials itself or human activities. Small-size, low-power wireless sensor node and low power electrochemical sensor board is designed to measure the condition of indoor environment in buildings such as home, offices, commercial premises and schools. In this paper, two query models, the broadcasting query protocol and flooding query protocol, were designed and programmed as a query-based routing protocol in wireless sensor network for an environment monitoring system. The flooding query routing protocol in environment monitoring is very effective as a power saving routing protocol and reliable data transmission between sensor nodes.

기계 상태 감시를 위한 무선 측정 시스템 (Wireless Measurement System for Machine Condition Monitoring)

  • 심민찬;양보석;이재욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.883-886
    • /
    • 2005
  • This paper proposed a wireless measurement system (WMS) for an effective condition monitoring using wireless communication. WMS consists of two parts: transmitter(TM) acquired a dynamic signal from physical system using ICP type accelerometer sensor. An acquired signal modulated through the low/high pass filter and amplifier in DAQ board, which converted to digital signal. Embedded board(E-board) transferred digital signals to base station(BS) through the socket IEEE.802.11.b. BS is adopted IOCP server structure. Because it can acquired signal well during transferred digital signal. Signal processing used LabVIEW Library, BS(server) designed to realize multi-thread using visual C++.NET for 1 many meaning data processing

  • PDF

무선 랜 통신을 이용한 기계 상태감시용 스마트 센서 (Smart Sensor for Machine Condition Monitoring Using Wireless LAN)

  • 태성도;손종덕;양보석;김동현
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.523-529
    • /
    • 2009
  • Smart sensor is known as intelligent sensor, it is different with other conventional sensors in the case of intelligent system embedded on it. Smart sensor has many benefits e.g. low-cost in usage, self-decision and self-diagnosis abilities. This sensor consists of perception element(sensing element), signal processing and technology of communication. In this work, a bridge and structure of smart sensor has been investigated to be capable to condition monitoring routine. This investigation involves low power consumption, software programming, fast data acquisition ability, and authoritativeness warranty. Moreover, this work also develops smart sensor to be capable to perform high sampling rate, high resolution of ADC, high memory capacity, and good communication for data transfer. The result shows that the developed smart sensor is promising to be applied to various industrial fields.

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • 제16권4호
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

IP 기반 무선네트워크에서의 혈관상태 평가를 위한 무구속 헬스케어 시스템 (Non-Intrusive Healthcare System for Estimation of Vascular Condition in IP-Enabled Wireless Network)

  • 정상중;권태하;정완영
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.76-83
    • /
    • 2013
  • A real-time wireless monitoring and analysis methods using the wearable PPG sensor to estimate cardiovascular condition is studied for ubiquitous healthcare service. A small size and low-power consuming wearable photoplethysmogram (PPG) sensor is designed as a wrist type device and connected with the IP node assigned its own IPv6 address. The measured PPG waveform in the IP node is collected and transferred to a central server PC through the IP-enabled wireless network for storage and analysis purposes. A monitoring and analysis program is designed to process the accelerated plethysmogram (APG) waveform by applying the second order derivatives to analyze systolic waves as well as heart rate variability analysis from the measured PPG waveform. From our results, the features of cardiovascular condition from individual's PPG waveform and estimation of vascular compliance by the comparison of APG-aging index (AI) and ratio of LF/HF are demonstrated.

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.

Implementation of Remote Monitoring Scenario using CDMA Short Message Service for Protected Crop Production Environment

  • Bae, Keun-Soo;Chung, Sun-Ok;Kim, Ki-Dae;Hur, Seung-Oh;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • 제36권4호
    • /
    • pp.279-284
    • /
    • 2011
  • Protected vegetable production area is greater than 26% of the total vegetable production area in Korea, and portion of protected production area is increasing for flowers and fruits. To secure stable productivity and profitability, continuous and intensive monitoring and control of protected crop production environment is critical, which is labor- and time-consuming. Failure to maintain proper environmental conditions (e.g., light, temperature, humidity) leads to significant damage to crop growth and quality, therefore farmers should visit or be present close to the production area. To overcome these problems, application of remote monitoring and control of crop production environment has been increasing. Wireless monitoring and control systems have used CDMA, internet, and smart phone communications. Levels of technology adoption are different for farmers' needs for their cropping systems. In this paper, potential of wireless remote monitoring of protected agricultural environment using CDMA SMS text messages was reported. Monitoring variables were outside weather (precipitation, wind direction and velocity, temperature, and humidity), inside ambient condition (temperature, humidity, $CO_2$ level, and light intensity), irrigation status (irrigation flow rate and pressure), and soil condition (volumetric water content and matric potential). Scenarios and data formats for environment monitoring were devised, tested, and compared. Results of this study would provide useful information for adoption of wireless remote monitoring techniques by farmers.

정밀 튜닝기반의 고효율 에너지 하비스터 (High Efficiency Energy Harvester by Precision Tuning)

  • 조성원;최병근;손종덕;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.821-825
    • /
    • 2008
  • Requirements of wireless sensor are increasing in machine condition monitoring. But, the limitation of battery power, self-power wireless sensor is necessary for the purpose of stand-alone operation. To overcome this problem, energy harvester is developed by the vibration energy. The purpose of this study is to develop a high efficiency energy harvester with high precision tuning.

  • PDF

Cross Layer 기반의 무선랜 채널 모니터링을 적용한 네트워크 적응형 HD 비디오 스트리밍 (Network-Adaptive HD Video Streaming with Cross-Layered WLAM Channel Monitoring)

  • 박상훈;윤하영;김종원;조창식
    • 한국통신학회논문지
    • /
    • 제31권4A호
    • /
    • pp.421-430
    • /
    • 2006
  • 본 논문에서는 IEEE 802.11a 무선랜(WLAN) 환경에서 Cross Layer 기반의 채널 모니터링(Cross-Layered Monitoring: CLM)을 이용한 네트워크 적응형 고선명(high definition: HD) MPEG-2 TS 비디오 스트리밍 시스템을 제안한다. 무선 채널 모니터링을 위해 AE(access point)는 MAC(medium access control) 계층의 전송 상태를 주기적으로 측정하고 응용 계층의 스트리밍 서버로 전달한다. 이것은 비디오 스트리밍 응용 프로그램이 피드백 기반의 종단간 모니터링(End-to-End Monitoring: E2EM) 기법을 적용할 때보다 가변적인 무선 채널 상태에 좀 더 빠르고 효과적으로 적응할 수 있게 한다. 스트리밍 서버는 네트워크에 적응적인 전송을 위해 측정된 무선 채널 상태에 따라 우선순위 기반의 프레임 폐기(priority-based frame dropping)를 수행한다. 이를 위해 스트리밍 서버는 실시간 파싱(real-time parsing)과 프레임 기반의 패킷 우선순위화(frame-based prioritized packetization) 기능을 제공한다. 성능 평가를 위해 IEEE 802.11a 무선랜 환경에서의 다양한 스트리밍 실험을 수행한다. 실험 결과는 제안 시스템이 시간에 따라 가변하는 무선 채널 상태에서 기존 기법에 비해 종단간 비디오 스트리밍의 품질을 향상시킬 수 있음을 보여준다.