• 제목/요약/키워드: wireless channel

검색결과 2,253건 처리시간 0.026초

IEEE 802.11 메쉬 네트워크에서 채널 다양성과 노드 연결성 향상을 위한 레이트 분할 멀티 채널 프로토콜 (A Rate Separating Multi-Channel Protocol for Improving Channel Diversity and Node Connectivity in IEEE 802.11 Mesh Networks)

  • 김석형;서영주;권동희
    • 한국통신학회논문지
    • /
    • 제35권12A호
    • /
    • pp.1152-1159
    • /
    • 2010
  • 무선 메쉬 네트워크는 무선 링크를 통해 백본 네트워크를 형성하여 사용자에게 인터넷 접근을 제공한다. WMN의 주요 이슈는 네트워크 용량이다. 이를 위해 IEEE 802.11 의 멀티 채널과 멀티 레이트를 활용할 수 있다. 채널은 채널 할당에 따라 노드 연결성 (node connectivity)과 채널 다양성 (channel diversity)을 결정한다. 또한, IEEE 802.11 멀티 레이트 네트워크에서는 RA (Rate Anomaly) 문제가 발생하는데, 이는 낮은 레이트 링크들이 높은 레이트 링크의 성능을 심각히 저하시키는 현상이다. 본 논문에서는 노드 연결성과 채널 다양성을 향상시키고 RA문제를 완화하는 레이트 분할 멀티 채널 (Rate Separating Multi-Channel, RSMC) 프로토콜을 제안한다. RSMC는 트리 기반 WMN를 형성하여 채널 다양성을 증가시키고, 다른 레이트를 사용하는 트리 위의 링크들을 채널로 분리시켜 RA를 줄인다. 또한, 노드 연결성을 증가하기 NC (Network Connectivity) 알고리즘을 사용한다. 시뮬레이션을 통해 RSMC이 기존 멀티 채널 프로토콜보다 총 처리율, 노드 연결성, 채널 다양성 측면에서 향상된 성능을 보임을 입증하였다.

A Joint Channel Estimation and Data Detection for a MIMO Wireless Communication System via Sphere Decoding

  • Patil, Gajanan R.;Kokate, Vishwanath K.
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.1029-1042
    • /
    • 2017
  • A joint channel estimation and data detection technique for a multiple input multiple output (MIMO) wireless communication system is proposed. It combines the least square (LS) training based channel estimation (TBCE) scheme with sphere decoding. In this new approach, channel estimation is enhanced with the help of blind symbols, which are selected based on their correctness. The correctness is determined via sphere decoding. The performance of the new scheme is studied through simulation in terms of the bit error rate (BER). The results show that the proposed channel estimation has comparable performance and better computational complexity over the existing semi-blind channel estimation (SBCE) method.

IoT 무선 센서를 위한 RF 스펙트럼 인지 기술 (RF Spectrum Cognition Technologies for IoT Wireless Sensors)

  • 윤원상;한상민
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.122-127
    • /
    • 2016
  • In this paper, new spectrum sensing schemes based on analog/RF front-end processing are introduced for IoT wireless sensor networks. While the conventional approaches for wireless channel cognition have been issued in signal processing area, the RF spectrum cognition concept makes it feasible to achieve cognitive wireless sensor networks (C-WSNs). The spectrum cognition at RF processing is categorized as four kinds of sensing mechanisms. Two recent reseaches are described as promising candidates for the C-WSN. One senses spectrum by the frequency discriminating receiver, the other senses and detects from the frequency selective super-regenerative receiver. The introduced systems with simple and low-power RF architectures play dual roles of channel sensing and demodulation. simultaneously. Therefore, introduced spectrum sensing receivers can be one of the best candidates for IoT wireless sensor devices in C-WSN environments.

무선 채널에서의 Selective Repeat ARQ 프로토콜의 Delay 성능 분석 (Delay Analysis of Selective Repeat ARQ for a Markovian Source Over a Wireless Channel)

  • 김정근;김영수;이계산
    • 한국통신학회논문지
    • /
    • 제29권11B
    • /
    • pp.930-937
    • /
    • 2004
  • 이 논문에서는 시간에 따라 채널 상태가 변화는 무선 채널 상에서 Markov 소스의 딜레이 성능을 분석하였다. 무선 링크의 양단에서 Selective-repeat (SR) ARQ 프로토콜을 사용한다고 가정했다. 이 논문에서는 대기 시간과 전송 및 재전송 시간 그리고 재 정렬 시간으로 구성된 단대단 평균 패킷 딜레이에 대한 근사화된 분석 방식을 제안하였다. 수치적인 분석과 시뮬레이tus 결과와의 분석을 통해서, 이 연구에서 제안한 분석 방식이 대부분의 경우 정확한 결과를 예측하고 있음을 증명하였다.

Fuzzy Logic Based Neural Network Models for Load Balancing in Wireless Networks

  • Wang, Yao-Tien;Hung, Kuo-Ming
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.38-43
    • /
    • 2008
  • In this paper, adaptive channel borrowing approach fuzzy neural networks for load balancing (ACB-FNN) is presented to maximized the number of served calls and the depending on asymmetries traffic load problem. In a wireless network, the call's arrival rate, the call duration and the communication overhead between the base station and the mobile switch center are vague and uncertain. A new load balancing algorithm with cell involved negotiation is also presented in this paper. The ACB-FNN exhibits better learning abilities, optimization abilities, robustness, and fault-tolerant capability thus yielding better performance compared with other algorithms. It aims to efficiently satisfy their diverse quality-of-service (QoS) requirements. The results show that our algorithm has lower blocking rate, lower dropping rate, less update overhead, and shorter channel acquisition delay than previous methods.

An efficient Channel Estimation Technique of OFDM-Base Space-Time Coded Wireless LAN Systems

  • Kim, Dong-Ok
    • Journal of information and communication convergence engineering
    • /
    • 제2권2호
    • /
    • pp.61-66
    • /
    • 2004
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia Wireless LAN system. The presented method is a comparative analysis between a case where parameter a for time average is 0.3.1 with consideration of channel presumption with two types of rms delayed spread, which is 50nsec. 150nsec, for the performance analysis of STTC (Space-Time Trellis Code) adopting time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of l.0dB in $10^{-3}$ when a was 0.3 than adopting only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • 제7권4호
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Iterative Channel Estimation for MIMO-OFDM System in Fast Time-Varying Channels

  • Yang, Lihua;Yang, Longxiang;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4240-4258
    • /
    • 2016
  • A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.

BLUE-Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks

  • PremKumar, M.;SenthilKumaran, V.N.;Thiruvengadam, S.J.
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.511-517
    • /
    • 2012
  • The best linear unbiased estimator (BLUE) is most suitable for practical application and can be determined with knowledge of only the first and second moments of the probability density function. Although the BLUE is an existing algorithm, it is still largely unexplored and has not yet been applied to channel estimation in amplify and forward (AF)-based wireless relay networks (WRNs). In this paper, a BLUE-based algorithm is proposed to estimate the overall channel impulse response between the source and destination of AF strategy-based WRNs. Theoretical mean square error (MSE) performance for the BLUE is derived to show the accuracy of the proposed channel estimation algorithm. In addition, the Cram$\acute{e}$r-Rao lower bound (CRLB) is derived to validate the MSE performance. The proposed BLUE channel estimation algorithm approaches the CRLB as the length of the training sequence and number of relays increases. Further, the BLUE performs better than the linear minimum MSE estimator due to the minimum variance characteristic exhibited by the BLUE, which happens to be a function of signal-to-noise ratio.