• Title/Summary/Keyword: wireless D2D communication

Search Result 419, Processing Time 0.03 seconds

Social-Aware Resource Allocation Based on Cluster Formation and Matching Theory in D2D Underlaying Cellular Networks

  • Zhuang, Wenqin;Chen, Mingkai;Wei, Xin;Li, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1984-2002
    • /
    • 2020
  • With the appearance of wireless spectrum crisis in traditional cellular network, device-to-device (D2D) communication has been regarded as a promising solution to ease heavy traffic burden by enabling precise content delivery among mobile users. However, due to the channel sharing, the interference between D2D and cellular users can affect the transmission rate and narrow the throughput in the network. In this paper, we firstly present a weighted interference minimization cluster formation model involving both social attribute and physical closeness. The weighted-interference, which is evaluated under the susceptible-infected(SI) model, is utilized to gather user in social and physical proximity. Then, we address the cluster formation problem via spectrum clustering with iterative operation. Finally, we propose the stable matching theory algorithm in order to maximize rate oriented to accomplish the one-to-one resource allocation. Numerical results show that our proposed scheme acquires quite well clustering effect and increases the accumulative transmission rate compared with the other two advanced schemes.

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.

Study on D2D Relay based Interconnection Network of HAM Radio and Wi-Fi for Securing Communication Performance in Satellite Wireless Package Systems (이동단말용 위성 통신 무선 패키지 시스템을 위한 D2D Relay 기반 HAM Radio와 Wi-Fi Network 결합망의 통신 성능 확보 연구)

  • Hwang, Yu Min;Cha, Jae Sang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • In this paper, we introduce a wireless package system based on the amateur radio HR(HAM Radio) and satellite communication as a novel wireless disaster communication system and have configured a interference scenario receiving interference from adjacent base stations and D2D groups in the disaster network. In such interference scenarios, we propose a frequency re-allocation method to avoid interference and communicate with disaster networks by securing the channel capacity required between D2D terminals. As a result of computer simulation, we can find the proposed method has improved BED performance of a gain of 1.5dB and overall system throughput than conventional methods.

Resource Allocation Scheme for D2D Communications in Multi-Cell Environments (다중 셀 환경에서 단말 간 직접 통신을 위한 자원 할당 방식)

  • Oh, Sung-Min;Lee, Changhee;Yun, Miyoung;Shin, Jaesheung;Park, Ae-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.601-609
    • /
    • 2014
  • This paper proposes a resource allocation scheme suitable for D2D communications in multi-cell environment. In order to solve the inter-cell interference, the proposed scheme allocates the pre-assigned resource group and shares the information with neighbor cells. This paper also proposes a power control scheme for D2D communication to enhance the cell throughput. By the simulation results, the average SINR of the cellular uplink and D2D communication link are mostly higher than 10 dB when the proposed scheme is applied. On the other hand, with the inter-cell non-coordinated resource allocation scheme, the average SINR of the D2D communication link are decreased by 0 dB. In addition, the proposed scheme can enhance the cell throughput up to 8 % compared with the inter-cell non-coordinated resource allocation scheme.

Joint User Association and Resource Allocation of Device-to-Device Communication in Small Cell Networks

  • Gong, Wenrong;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • With the recent popularity of smart terminals, the demand for high-data-rate transmission is growing rapidly, which brings a new challenge for the traditional cellular networks. Both device-to-device (D2D) communication and small cells are effective to improve the transmission efficiency of local communication. In this paper, we apply D2D communication into a small cell network system (SNets) and study about the optimization problem of resource allocation for D2D communication. The optimization problem includes system scheduling and resource allocation, which is exponentially complex and the optimal solution is infeasible to achieve. Therefore, in this paper, the optimization problem is decomposed into several smaller problems and a hierarchical scheme is proposed to obtain the solution. The proposed hierarchical scheme consists of three steps: D2D communication groups formation, the estimation of sub-channels needed by each D2D communication group and specific resource allocation. From numerical simulation results, we find that the proposed resource allocation scheme is effective in improving the spectral efficiency and reducing the outage probability of D2D communication.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

Fixed Biased 4-D Multiple-Subcarrier Signal for Average Power Reduction in Optical Wireless Communication (Fixed bias를 가지는 4-D Multiple-Subcarrier 신호를 이용한 Optical Wireless 통신의 평균 전력 절감에 관한 연구)

  • 김해근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.103-109
    • /
    • 2003
  • We have proposed the 4-Dimensional Multiple-Subcarrier Modulation with fixed bias in Optical Wireless Communications. Here, the 4-D signal vectors are derived from the optimization technique of signal waveforms maximizing the minimum distance between signal points in an n-dimensional Euclidean sphere. The resulting vectors are used in generating the output amplitude of impulse generator in a Multiple-Subcarrier Modulation scheme. We have achieved that the normalized power requirement of the proposed system is maximum 3 dB and 3.3 dB smaller than those of normal QPSK, Reserved Subcarrier, and Minimum Power scheme, respectively. Also, in the range of 1.125 ∼ 1.25 of the normalized bandwidth, the proposed system has maximum 3 dB, 2 ∼ 4 dB, 0 ∼ 3 dB smaller bandwidth requirement compare to normal QPSK, Res. Subcarrier, Min. Power schemes, respectively.

A Study on the Environment of USV Wireless Communication (무인선의 무선통신환경에 관한 연구)

  • Hong, Sin-Pyo;Jeong, Jong-Won;Lee, Chi-Won;Lee, Ho-Sik;Choi, Han-Woo;Park, In-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • Unmanned surface vehicles (USVs) conduct various missions while exchanging information with control centers. Maritime security, coastal surveillance, and sea surface and undersea inspections are included in the important missions of USVs. To carry out these missions, large amounts of information are required from sensors, such as cameras, radars, and sonars. High bandwidth wireless communication is necessary to send this information to the control center in real time. In general, USVs are made using small boats. The motions of small boats are easily influenced by sea waves and the magnitude of changes in the attitude is large and the period of the changes is short in comparison with large ships. Thus, the direction of an antenna beam pattern for a wireless communication system in a USV can change rapidly, and with a large magnitude. In addition, since the reflection of electromagnetic waves on the sea surface is not negligible, the effect of multipath noises on the wireless communication system must be considered carefully. There are also several other elements that negatively affect wireless communication systems in USVs. This paper presents the wireless communication environment to be considered in the design and implementation of wide bandwidth communication systems for USVs. Short test results for wireless communication on the sea are also given.

A 3-stage Wideband Q-band Monolithic Amplifier for WLAN

  • Kang, Dong-Min;Lee, Jin-Hee;Yoon, Hyung-Sup;Shim, Jae-Yeob;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1054-1057
    • /
    • 2002
  • The design and fabrication of Q-band 3-stage monolithic microwave integrated circuit(MMIC) amplifier for WLAN are presented using 0.2$\square$ AIGaAs/lnGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT). In each stage of the MMIC, a negative feedback is used for both broadband and good stability. The measurement results are achieved as an input return loss under -4dB, an output return loss under -10dB, a gain of 14dB, and a PldB of 17dBm at Q-band(36~44GHz). These results closely match with design results. The chip size is 2.8${\times}$1.3mm$^2$. This MMIC amplifier will be used as the unit cell to develop millimeter-wave transmitters for use in wideband wireless LAN systems.

  • PDF

Reduction of the Retransmission Delay for Heterogeneous Devices in Dynamic Opportunistic Device-to-device Network

  • Chen, Sixuan;Zou, Weixia;Liu, Xuefeng;Zhao, Yang;Zhou, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4662-4677
    • /
    • 2018
  • The dynamic opportunistic device-to-device (DO-D2D) network will frequently emerge in the fifth generation (5G) wireless communication due to high-density and fast-moving mobile devices. In order to improve the Quality of Experience (QoE) of users with different computing capacity devices in the DO-D2D network, in this paper, we focus on the study of how to reduce the packets retransmission delay and satisfy heterogeneous devices. To select as many devices as possible to transmit simultaneously without interference, the concurrent transmitters-selecting algorithm is firstly put forward. It jointly considers the number of packets successfully received by each device and the device's connectivity. Then, to satisfy different devices' demands while primarily ensuring the base-layer packets successfully received by all the devices, the layer-cooperation instantly decodable network coding is presented, which is used to select transmission packets combination for each transmitter. Simulation results illustrate that there is an appreciable retransmission delay gain especially in the poor channel quality network compared to the traditional base-station (BS) retransmission algorithm. In addition, our proposed algorithms perform well to satisfy the different demands of users with heterogeneous devices.