• Title/Summary/Keyword: wire reinforced ceramic

Search Result 7, Processing Time 0.025 seconds

A Study on Frictioal Resistance Force of Orthodontic Resin Bracket (교정용 Resin bracket의 마찰 저항력에 관한 연구)

  • Lee, Won-you;Lim, Kyung-Soo
    • The korean journal of orthodontics
    • /
    • v.29 no.1 s.72
    • /
    • pp.107-112
    • /
    • 1999
  • As increasing number of adult patients, the esthetic orthodontic appliances are needed. They are tooth-colored or translucent ceramic and resin brackets. Although ceramic and resin bracket have good esthetics, there are some disadvantage such as frictions. Recently, metal-reinforced resin bracket(MRBB) were introduced. The purpose of this study is to find frictional force of MRRB, ceramic bracket and resin brackets. There is few study in frictional force about metal reinforced resin bracket(MRRB). This study used 4 orthodontic wire(.016 S-S, .0l6X.022 S-S, .016 $TMA^{\circledR}$, .0l7X.025 $TMA^{\circledR}$ and 5 brackets(one metal bracket, one ceramic bracket, one resin bracket, two MRRB). The following result is obtained using metal bracket(Ormco.Co., U.S.A), ceramic brackets($Crystalline^{\circledR}$), resin bracket( Clear Medium $Siamase^{\circledR}$). Following conclusions are obtained. 1. Ceramic and resin bracket have significantly more frictional forces than metal reinforced resin bracket and metal bracket. 2. There is no significant difference in frictional force according to the slot types of metal - reinforced resin brackets. 3. There is no significant difference in frictional force between metal reinforced resin bracket and metal bracket. 4.. Frictional force is decreased in S-S wire than TMA wire.

  • PDF

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

A Stydy on Steel Wire Fiber Reinforced Refractory Castable (철근 캐스터블 내화물의 고온특성에 관한 연구)

  • 박금철;최영섭;한문희;장영재;박근원
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.69-74
    • /
    • 1980
  • This study deals with the wire content, wire diameter, aspect ratio , it's arrangement of steel, wire fiber and the sorts of castable which affected the character of steel wire fiber reinformced refractory castable. Two kinds of alumina based refractory castables, one is for 1650℃ and the other is for 1800℃, and stainless steel which is SUS 304 type 0.25, 0.34 , 0.37 and 0.50m/min diameter were used respectively. Aspect ratio was adjusted to 50, 75, 100 and steel fiber content was also adjusted to 1-4wt% each. The results of the experiment were as follows : 1. At firing temperature around 1,000℃, MOR is increased with increasing wire content and aspect ratio with decreasing firing temperature, which depends on the Romualdi's Fiber Spacing Theory. But for calculation of the fiber spacing, Swamy equation is more a aplicable to the extensive fiber mixing conditions. However, the condition differs from the above at firing temperature around 1,350℃ ,because of the degradation of wire and the progress of sintering of castable. 2. Linear change is getting larger corresponding to the increase of wire content, and the spaling resistivity is increasing corresponding to the increase of wire content and to aspect ratio, and with decreasing wire diameter. 3. Firing shrinkage under load is getting greater as higher wire content, and the shrinkage of the test pieces which fiber is vertically oriented is getting greater than the test pieces which fiber is randomly oriented.

  • PDF

The Change of Wire According to the Heat Pressing of Ceramic in Wire-Reinforced Ceramics (금속선 강화 도재에서 도재 가압에 따른 금속선의 변화)

  • Kim, Sung-Rok;Kim, U-sic;Lee, Il-Kwon;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • The purpose of this research was to evaluate ceramics reinforced with thin metal wires, The results could be applied to evaluate the mechanical properties of in fabricating ceramic crowns and bridges. The wires used in the study were Platinum of 0.025 mm, 0.0508 mm, 0.1 mm and Titanium of 0.127 mm diameters. The ingot used was for staining technique. One or two wires were inserted into the ceramics and the specimens were observed with dental X-rays. The results obtained in this study were as follows: 1.The commonly observed phenomenon was that the wires inserted were pushed away to the peripherally, regardless of types diameter, or numbers of wires. 2.In some Empress specimen the wire was observed to be loosed and cut off.

An esthetic appliance for the management of crown-root fracture: a case report

  • Jeon, Sang-Min;Lee, Kang-Hee;Jung, Bock-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.226-229
    • /
    • 2014
  • Orthodontic extrusion is usually performed by means of a fixed orthodontic appliance that utilizes arch wire attached to adjacent teeth and transfers the desired force by elastic from the wire to the root. However, clinicians often encounter cases where the bonding required for tooth traction is not possible because the adjacent teeth have been restored with ceramic or veneer. The purpose of this case report is to describe a modified orthodontic extrusion appliance that is useful when conventional orthodontic treatment is not possible. The modified appliance was fabricated using an artificial tooth, clear plastic sheeting, and a braided fiber-reinforced composite strip that covered adjacent teeth without bonding. It satisfied the esthetic and functional needs of the patient and established the optimal biologic width.

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

Evaluation of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 교정선 사이의 마찰력)

  • Jeong, Tae-Jong;Choie, Mok-Kyun
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.613-623
    • /
    • 2000
  • The purpose of this study was to amount of the frictional forces with the brackets and wires, ligation methods, dry/wet, offsets, interbracket distances, velocity and to compare them each other by different conditions. This study tested 0.018'x0.025' slot sized 8 types of orthodontic bracket systems and 0.016', 0.016'x0.022' sized stainless steel, NiTi, Cu-NiTi orthodontic wires. One cuspid bracket were positioned on the slide glass and archwire was engaged into bracket and ligated with elastomeric modules. The values of frictional forces were measured with the instron universal testing machine. The results were as follows; 1. Polycrystalline ceramic bracket had the highest mean frictional forces and followed and by ceramic reinforced plastic bracket, metal bracket, plastic bracket with metal slot, monocrystalline ceramic bracket, single bracket, self-ligating bracket, friction free bracket in descending order. The self-ligating bracket showed low frictional forces in the round wires and high frictional forces in the rectangular wires. 2. Stainless steel wires had the least frictional forces and followed by NiTi, Cu-NiTi wires in descending order. Round wires had lower frictional forces then that of rectangular wires. 3. The stainless steel ligation method had significantly greater mean frictional forces them the elastomeric module ligation method. 4. Artificial saliva statistically increased the frictional forces in stainless steel wire, NiTi wire and Cu-NiTi wire. 5. There was a statistically significant difference with offset change 6. There was no statistically significant difference with interbracket distance in stainless steel wires but a significant difference in NiTi wires as the interbracket was decreased. 7 There was no statistically significant difference with velocity change. From the above findings, self-ligating bracket, stainless steel wires and the elastomeric module ligation method might be effective than any other materials to reduce the frictional forces in the orthodontic treatment and can be correlated to clinical situations seen in orthodontic patient care.

  • PDF