• Title/Summary/Keyword: wire model

Search Result 655, Processing Time 0.025 seconds

Analysis of Path Loss Model and Channel Characteristics at 2.40Hz on Navy Warship's Internal Space (해군 함정 내부공간에 대한 2.4GHz 대역의 채널 특성과 경로손실모델 분석)

  • Choi, Dae-Geun;Lee, Jung-Kyu;Kim, Young-Hoon;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1422-1432
    • /
    • 2011
  • Recently, wireless network has been playing an important role in communication system and the applications have become wider with its big technological leap. In defence sector, there are some attempts to use wireless networks to go beyond the wire system. Especially, most internal space of the warships have the wired communication system, which are complicated and inefficient. In this paper, we measure and make a channel model about the internal parts of the warship which contain compartments and corridors including many differences from general indoor environment for establishing wireless networks in warship's internal space. In the unique environment made of metal, we measure 2.4GHz signals using continuous wave(CW) and analysis the environment to present indoor path-loss model for comparing with results from the ray-tracing tool. Moreover, we draw the conclusion that the environment of warships has a wide difference from conventional environments and put the results to practical use in warship's internal space.

Modeling and Analysis of Dynamic Characteristic for Bundle Fluid System (집속체 유동계의 모델링과 운동 특성해석)

  • Kim, Jong-Sung;Heo, Yu;Kim, Yoon-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1643-1646
    • /
    • 2003
  • Drawing is a mechanical operation that attenuates thick material to an appropriate thickness for the next processing or end usage. When the input material has the form of a bundle or bundles made of very thin and long shaped wire or fibers, this attenuation operation is called "bundle drawing" or "drafting" Drafting is being used widely in manufacturing staple yarns. which is indispensable for the textile industry. However, the bundle processed by this operation undertake more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. Since long there have been many researches tying to find out factors affecting the irregularity of linear desity, to obtain optimal drafting conditions, to develop efficient measuring and analysis methods of linear density of bundle, etc., but there exists yet no fundamental equation describing the dynamic behavior of the flowing bundle during processing. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical lows representing physical variables, i.e. linear density and velocity as the dynamic state of bundle. The conservation of mass and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.

  • PDF

Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators (2단 평행판 정전식 집진기에서의 입자하전 및 포집)

  • 오명도;유경훈;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

Comparison of the Quality of Clavicle Fracture Three-dimensional Model Printing by Open Source and Commercial use Digital Imaging and Communications in Medicine Stereolithography File Conversion Program (공개용과 상업용 DICOM STL 파일변환 프로그램으로 출력한 삼차원 프린팅 쇄골 골절 모델의 품질비교)

  • Oh, Wang-Kyun;Kim, Hyeong-Gyun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.61-66
    • /
    • 2018
  • The recent 3D printing technology is used in various medical, manufacturing, and education fields and is more efficient in terms of production process, time, and cost than existing production. Especially in fracture surgery, interest and research have been focused on improving accuracy, shortening of operation time and recovery time, and reducing reoperation. However, because of the financial and technical problems of the 3D printer and the file conversion program, the 3D printing is made directly at the hospital, and it is not generally used for diagnosis of fracture and surgical research. In this study, to solve those problems, clavicle CT imaging was switched into Osirix Open Source DICOM Viewer, Stereolithography file conversion programs and commercial Terarecon 3D DICOM Viewer, file conversion programs, and then clavicle fracture model was directly made through 3D printer of fused filament fabrication wire additive processing method, and then the accuracy of the shape was compared and analyzed. Clavicle fracture models printed in two methods were blind-tested on clinicians of general hospitals' orthopedics and radiologic technicians with over 10 years of experiences, and then their analysis opinions of resolution reviews were analyzed. The result showed no difference. The 3D printing model with open source DICOM STL file conversion program used was applicable to clinical, so it is considered useful in precision diagnosis of fracture and operation plans.

A Study on the Dataset Construction and Model Application for Detecting Surgical Gauze in C-Arm Imaging Using Artificial Intelligence (인공지능을 활용한 C-Arm에서 수술용 거즈 검출을 위한 데이터셋 구축 및 검출모델 적용에 관한 연구)

  • Kim, Jin Yeop;Hwang, Ho Seong;Lee, Joo Byung;Choi, Yong Jin;Lee, Kang Seok;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.290-297
    • /
    • 2022
  • During surgery, Surgical instruments are often left behind due to accidents. Most of these are surgical gauze, so radioactive non-permeable gauze (X-ray gauze) is used for preventing of accidents which gauze is left in the body. This gauze is divided into wire and pad type. If it is confirmed that the gauze remains in the body, gauze must be detected by radiologist's reading by imaging using a mobile X-ray device. But most of operating rooms are not equipped with a mobile X-ray device, but equipped C-Arm equipment, which is of poorer quality than mobile X-ray equipment and furthermore it takes time to read them. In this study, Use C-Arm equipment to acquire gauze image for detection and Build dataset using artificial intelligence and select a detection model to Assist with the relatively low image quality and the reading of radiology specialists. mAP@50 and detection time are used as indicators for performance evaluation. The result is that two-class gauze detection dataset is more accurate and YOLOv5 model mAP@50 is 93.4% and detection time is 11.7 ms.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Stress analysis of Multiloop Edgewise Arch Wire with various degree of tip back bend : a study using the finite element method (Multiloop Edgewise Arch Wire의 tip back 정도에 따른 응력 분포에 관한 유한요소법적 연구)

  • Lee, Young-Il;Cha, Kyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.127-142
    • /
    • 2000
  • This study have been carried out to find out the mechnical effect of Multiloop Edgewise Arch Wire(MEAW) making use of the finite element method. The tip back bend of MEAW taken in this analysis is $5^{\circ},\;10{\circ}\;and\;15{\circ}$. In addition, Class II or up & down elastic is applied to find out stress distribution and their values in PDL. A adult male of normal occlusion was selected to create the models of teeth and PDL. And the model of MEAW was also created using commercial finite element code (ANSYS version 5.2). The MEAW is forcibly engaged with a class II or up & down elastic, to determine the initial stress generated in PDL. Comparing the compressive and tensile stress at each reference-planes, following results are obtained. 1. When a MEAW of $5^{\circ},\;10{\circ}\;15{\circ}$ tip back bend was engaged with Class II or up & down elastic, the distribution of compressive, tensile stress in entire PDL is similar in each case. 2. The values of compressive and tensile stress in PDL is higher in $15{\circ}$ tip back bend case than in $10{\circ}\;or\;15{\circ}$ tip back bend case. 3. In the distal PDL of 1st and 2nd molar, compressive stress appears. The compressive area is more wide and its values is higher in PDL of 2nd molar than those in 1st molar. The compressive area and its values become more wide and higher according to the increase of the tip back bend. 4. The values of compressive stress are comparatively smaIIer in PDL of molars than those in premolars. 5. Comparing class II and up & down elastic case, tensile stress values in anterior teeth PDL are smaller md their distribution is more wide in up & down elastic case than class If elastic case. On another hand, there is no difference in distribution and stress values in PDL of posterior teeth between two cases. 6. Comparing the tensile area in PDL of anterior teeth, tensile stress values are maximum in PDL of canine.

  • PDF

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

External dose assessment for workers dismantling the bio-shield of a commercial power nuclear reactor: Case study of Kori-1, Korea

  • Lee, ChoongWie;Lee, Donghyun;Kim, Hee Reyoung;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2085-2091
    • /
    • 2020
  • The license for Kori-1, the first commercial reactor in Busan, Korea, was terminated in June 2017; therefore, preparations are being made for its decommissioning. Because the radioactivity of Bio-shield varies greatly throughout the structure, the doses received by the workers depend on the location, order, and duration of dismantling operations. Thus, a model for evaluating the worker external dose during the dismantling of the Kori-1 bio-shield was developed, and work scenarios for dose assessment were designed. The Dose evaluation code VISIPLAN was used for dose assessment. The dose rate around the bio-shield was evaluated and the level of exposure to the operator was evaluated according to the work scenario. The maximum annual external dose was calculated as 746.86 mSv for a diamond wire saw operator under dry cutting conditions, indicating that appropriate protective measures, such as changing dismantling sequence, remote monitoring, shield installation, and adjustment of work team are necessary for the safe dismantling of the bio-shield. Through these protective measures, it was found that the worker's dose could be below the dose limit.