• Title/Summary/Keyword: winter storm

Search Result 51, Processing Time 0.024 seconds

Study on the Synoptic Meteorological Characteristics of Windstorms Occurring on the Korean Peninsula

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul;Lee, Bo-Ram
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1673-1691
    • /
    • 2014
  • Although most natural disaster related studies conducted in Korea recently have been related to typhoons or severe rainstorms, the occurrence frequency of disasters due to windstorms or rainstorms is also high. To reduce the strong wind damage caused by strong windstorms due to climate change, basic studies of strong winds are necessary. Therefore, in this study, the types and representative cases of windstorms that were observed to have been higher than 14 m/s, which is the criterion for strong-wind warnings from the Korea Meteorological Administration, were selected from among those windstorm cases that occurred on the Korean Peninsula for 10 years to conduct a statistical analysis of them and determine their synoptic meteorological characteristics. The cases of windstorms occurring on the Korean Peninsula were divided into six weather patterns according to the locations of the anticyclones/cyclones. Among these types, the SH type, which occurs when Siberian Highs expand into the Korean Peninsula, showed the highest occurrence frequency, accounting for at least the majority of the entire occurrence frequency of windstorms together with that of the EC type, which occurs when cyclones develop on the East Sea, and there was no clear yearly trend of the occurrence frequencies of windstorms. The monthly occurrence frequencies of windstorms were formed mainly by typhoons in the summer and the Siberian Highs in the winter, and the months with the highest windstorm occurrence frequencies were December and January, in which mainly the SH and EC type windstorms occurred. March showed the next highest occurrence frequency with10 times, and SH windstorms occurred the most frequently in March, followed by the CC, SC, and EC types of windstorms, in order of precedence. Therefore, attention to these types of windstorms is required. Countermeasures against storm and flood damage in Korea targeting the summer should be re-reviewed together with pre-disaster prevention plans, because cases of storm and flood damage due to windstorms occur more frequently than those due to typhoons, and they occur throughout the year.

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Characteristics of Precipitation over the East Coast of Korea Based on the Special Observation during the Winter Season of 2012 (2012년 특별관측 자료를 이용한 동해안 겨울철 강수 특성 분석)

  • Jung, Sueng-Pil;Lim, Yun-Kyu;Kim, Ki-Hoon;Han, Sang-Ok;Kwon, Tae-Yong
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • The special observation using Radiosonde was performed to investigate precipitation events over the east coast of Korea during the winter season from 5 January to 29 February 2012. This analysis focused on the various indices to describe the characteristics of the atmospheric instability. Equivalent Potential Temperature (EPT) from surface (1000 hPa) to middle level (near 750 hPa) was increased when the precipitation occurred and these levels (1000~750 hPa) had moisture enough to cause the instability of atmosphere. The temporal evolution of Convective Available Potential Energy (CAPE) appeared to be enhanced when the precipitation fell. Similar behavior was also observed for the temporal evolution of Storm Relative Helicity (SRH), indicating that it had a higher value during the precipitation events. To understand a detailed structure of atmospheric condition for the formation of precipitation, the surface remote sensing data and Automatic Weather System (AWS) data were analyzed. We calculated the Total Precipitable Water FLUX (TPWFLUX) using TPW and wind vector. TPWFLUX and precipitation amount showed a statistically significant relationship in the north easterly winds. The result suggested that understanding of the dynamical processes such as wind direction be important to comprehend precipitation phenomenon in the east coast of Korea.

Evaluation of SWAT Applicability to Simulate Soil Erosion at Highland Agricultural Lands (고랭지 농경지의 토양유실모의를 위한 SWAT 모형의 적용성 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Sa, Gong-Myong;Ahn, Jce-Hun;Lim, Kyoung-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.67-74
    • /
    • 2005
  • The Doam watershed is located at alpine areas and the annual average precipitation, including snow accumulation, is significant higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. Also, extremely torrential rainfall, such as the typhoons 'RUSA' in 2002 and 'MAEMI' in 2003, caused significant amounts of soil erosion and sediment at the Doam watershed. However, the USLE model cannot simulate impacts on soil erosion of freezing and thaw of the soil. It cannot estimate sediment yield from a single torrential rainfall event. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The R$^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it is found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Two typhoons in 2002 and 2003, MAEMI and RUSA, caused 33% and 22% of total sediment yields at the Doam watershed, respectively. Thus, it is recommended that the SWAT model, capable of simulating snow melt, sediment yield from a single storm event, and long-term weather data, needs to be used in estimating soil erosion at alpine agricultural areas to develop successful soil erosion management instead of the USLE.

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach (잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측)

  • Park, Il Heum;Kang, Seong Wuk;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.527-535
    • /
    • 2016
  • The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

Characterization of Wintertime Atmospheric Aerosols in Seoul Using PIXE and Supplementary Analyzers

  • Ma, Chang-Jin;Mikio Kasahara;Hwang, Kyung-Chul;Yeo, Hyun-Gu;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.19-27
    • /
    • 2000
  • Particle Induced X-ray Emission (PIXE) and Elemental Analysis Syztem (EAS) were applied to the investiga-tion of the Characteristics and sources of wintertime atmospheric aerosols in Seoul. Atmospheric aerosols were collected by both fine and coarse fractions using a two-stage filter pack sampler from Kon-Kuk university during the winter season of 1999. PIXE was applied to the analysis of the middle and heavy elements with atomic numbers greater than 14(Si) and EAS was applied to the measurement of the light elements such as H, C and N. The fact that 64.2% of mass of fine particles in Seoul consists of the light elements (N, C , and H) suggests that the measurement of light elements is extremely important. The average mass concentration is Seoul was 38.6$\mu\textrm{g}$m(sup)-3. Elements such as Ca, Fe, Mg, and Ti appeared to have very low Fine/Coarse ratios(0.1∼0.4), whereas che-mical components related to anthropogenic sources such as Br, V, Pb, and Zn were observed to accumulate in the fine fraction. In the Asian Dust Storm(ADS) event, the concentation of soil components increased dramatically. Reconstruction of the fine mass concentrations estimated by a newly revised simple model was fairly in good agreement with the measured ones. Source identification was attempted using the enrichment factor and Pearsons coefficient of correlation. The typical elements derived from each source could be classified by this method.

  • PDF

Comparison of Data Assimilation Methods in a Regional Ocean Circulation Model for the Yellow and East China Seas (자료동화 기법에 따른 황·동중국해 지역 해양순환모델 결과 비교)

  • Lee, Joon-Ho;Moon, Jae-Hong;Choi, Youngjin
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.179-194
    • /
    • 2020
  • The present study aims to evaluate the effects of satellite-based SST (OSTIA) assimilation on a regional ocean circulation model for the Yellow and East China Seas (YECS), using three different assimilation methods: the Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter (EnKF), and 4-Dimensional Variational (4DVAR) techniques, which are widely used in the ocean modeling communities. The model experiments show that an improved initial condition by assimilating the SST affects the seasonal water temperature and water mass distributions of the YECS. In particular, the SST data assimilation influences the temperature structures horizontally and vertically in winter, thereby improving the behavior of the YS warm current water. This is due to the fact that during wintertime the water column is well mixed, which is directly updated by the SST assimilation. The model comparisons indicate that the SST assimilation can improve the model performance in resolving the subsurface structures in wintertime, but has a relatively small impact in summertime due to the strong stratification. The differences among the different assimilation experiments are obvious when the SST was sharply changed due to a typhoon passage. Overall, the EnKF and 4DVAR show better agreement with the observations than the EnOI. The relatively low performance of EnOI under storm conditions may be related with a limitation of EnOI method whereby an analysis is obtained from a number of climatological fields, and thus the typhoon-induced SST changes in short-time scales may not be adequately reflected in the data assimilation.

SEASONAL AND UNIVERSAL TIME VARIATIONS OF THE AU, AL AND DST INDICES

  • AHN BYUNG-HO;MOON GA-HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.93-99
    • /
    • 2003
  • Various attempts have been made to explain the: pronounced seasonal and universal time (UT) variations of geomagnetic indices. As one of such attempts, we analyze the hourly-averaged auroral electroject indices obtained during the past 20 years. The AU and AL indices maximize during summer and equinoctial months, respectively. By normalizing the contribution of the solar conductivity enhancement to the AU index, or to the eastward electrojet, it is found that the AU also follows the same semiannual variation pattern of the AL index, suggesting that the electric field is the main modulator of the semiannual magnetic variation. The fact that the variation pattern of the yearly-mean AU index follows the mirror image of the AL index provides another indication that the electric field is the main modulator of magnetic disturbance. The pronounced UT variations of the auroral electrojet indices are also noted. To determine the magnetic activity dependence, the probability of recording a given activity level of AU and AL during each UT is examined. The UT variation of the AL index, thus obtained, shows a maximum at around 1200-1800 UT and a minimum around 0000-0800 UT particularly during winter. It is closely associated with the rotation of the geomagnetic pole around the rotational axis, which results in the change of the solar-originated ionospheric conductivity distribution over the polar region. On the other hand the UT variation is prominent during disturbed periods, indicating that the latitudinal mismatch between the AE stations and the auroral electrojet belt is responsible for it. Although not as prominent as the AL index, the probability distribution of the AU also shows two UT peaks. We confirm that the Dst index shows more prominent seasonal variation than the AE indices. However, the UT variation of the Dst index is only noticeable during the main phase of a magnetic storm. It is a combined result of the uneven distribution of the Dst stations and frequent developments of the partial ring current and substorm wedge current preferentially during the main phase.

The real nature of the West Wind in Shelley's Ode to the West Wind (셸리의 Ode to the West Wind에 나타난 서풍의 실체)

  • Jeon, Woong-Ju
    • English Language & Literature Teaching
    • /
    • no.5
    • /
    • pp.259-272
    • /
    • 1999
  • The real nature of the west wind in Shelley's Ode to the West Wind is the divine providence which influences all things in this world- that is, whether they are on land, in the sky, or in the sea. The divine providence is the manifestation of something beyond the present and tangibel object. In the first stanza, the real nature of the west wind in this poem is the wild wind, the breath of Autumn's being, the unseen presence, the azure sister of the Spring, a Destroyer, a Preserver, the winged seed, a creator, a philosopher, a poet, Shelley, and the wild spirit moving everywhere. In the second stanza, the real nature of the west wind in this poem is cloud, the angel of rain and lightning, fierce Maenad, the approaching storm, the congregated might, the black rain, the fire, hail, solid atmosphere, the tremendous power of revolutionary change, and the power that influences all things in the sky. In the third stanza, the real nature of the west wind in this poem is the voice that makes the oozy woods which wear the sapless foliage of the Atlantic, and the power makes the blue Mediterranean wake from his summer dream. the fit medium of expression which Shelley's soul was seeking for, Shelley's passion, Shelley's partner, Shelley's co-worker, and a strong presence which influences in the sea. In the fourth stanza, the real nature of the west wind in this poem is the mightest presence, the power, the strength, the free presence, the uncontrollable, the wanderer over heaven, a vision, the tameless, the swift, the proud and the God who can save Shelley form the heavy weight of hours and lift Shelley as a wave a leaf, a cloud. In the fifth stanza, the real nature of the west wind in this poem is the mighty harmony, the fierce Spirit, Shelley's spirit, the impetuous spirit, incanation of this verse, spark, the trumpet of a prophecy, the Providence which can make the Winter depart and call Spring, and the prophet. To conclude, the real nature of the west wind in this poem is Shelley's accumulated insight that he visulize his impulse of revolutionary thought.

  • PDF

Community Structure and Productivity of Phytobenthos in Juckdo (Eastern Coast of Korea) II. Seasonal Changes of Algal Vegetation in Relation to Annual Growth of Large Brown Algae (저서식물의 군집구조와 생산성(동해안, 죽도) II. 해조류 식생의 계절변화와 대형갈조류 성장상태의 관계)

  • 고철환
    • Journal of Plant Biology
    • /
    • v.26 no.4
    • /
    • pp.181-190
    • /
    • 1983
  • Seasonal occurrence of benthic algae and changes of subtidal vegetation were studied for their species composition, diversity and biomass during 1982 and 1983 at several selected sites at Juckdo Island (38$^{\circ}$12'N, 128$^{\circ}$32'E), eastern coast of Korea. Three large brown algae which played a role in change of algal vegetation through their great biomass were investigated with regard to their seasonal growth. Large brown algae such as Undaria pinnatifida, Costaria costata, Laminaria japonica, Agarum cribrosum, Sargassum confusum and S. hornerii constitute the major portion of vegetation in this area throughout the year. Algal vegetation in spring time is characterized by dominance of species U. pinnatifida and C. costata, whereas the summer vegetation by S. confusum and S. hornerii. In autumn large brown algae are shedded and only small algae, such as Chondrus ocellatus and Grateloupia filicina, remain. The vegetation in winter is dominated by the growth of U. pinnatifida and C. costata. Monthly changes in mean length and weight of randomly collected U. pinnatifida, C. costata and S. confusum are as follows; U. pinnatifida occurs from December to June and shows their maximum growth during March (120 cm in length, 201 g/individual in wet weight), its maximum growth rate is 1.4 cm/day, 3.3 g/day in this month. The growth season of C. costata is very similar to U.pinnatifida, but their average maximum length(110 cm) and weight (106 g/ind.) are lower than U. pinnatifida. The greatest growth rate is during March (1.8 cm/day, 2.0g/day). S. confusum is present throughout the year and reaches the maximum growth (102 cm, 63g/ind.) in July. Maximum growth rate (1.5 cm/day, 1.2 g/day) occurs also during this month. U. pinnatifida and C. costata show different months of maximum growth evidently during the two year. This seems to be caused by a considerable damage to the local vegetation followed by heavy storm in February 1983.

  • PDF