• 제목/요약/키워드: winter storm

Search Result 51, Processing Time 0.023 seconds

LARGE-SCALE CURRENTS AND SEA-BOTTOM ELEVATION CHANGE DEVELOPED BY WINTER STORMS

  • Sato, Shinji
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.89-94
    • /
    • 1996
  • Severe storms are frequently generated in winter along coasts on the Japan Sea side, which are developed by strong northwestern wind caused by periodic passages of low-pressure systems across the sea. The winter storm generally persists for several days, generating strong winds and large waves from northwest. During the storm, strong alongshore currents are also observed in the offshore region, which may continue to flow over a couple of days. (omitted)

  • PDF

Loading of Organic Matter according to Seasonal Changes into Lake Paldang during Non-storm Period (계절에 따른 비강우시 팔당호의 유기물 유입부하량)

  • Gil, Kyungik;Shin, Jiwoong;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.433-437
    • /
    • 2011
  • The study is conducted to evaluate loading of organic matter as seasonal changes during non-storm period into Lake Paldang which is used to a major drinking water source. Samples were taken in Lake Paldang intake during non-storm period and were analyzed loading of organic matter. From the results of the survey, improving of the water quality showed remarkable tendency depending on the changing periods from summer to fall and from fall to winter. Dilution effect from the increase of base run-off caused by the concentrated rainfall in rainy season, the characteristics of Korea's climate seems to have to be the reason. On the other hand, deteriorating of the water quality showed tendency depending on the changing periods from winter to spring and from spring to summer. Increase of Cyanobacteria etc. is explained by seasonal effects which are a small amount of the rainfall in winter and spring and gradational increase of water temperature.

The Distribution Characteristics and Long-term Trend of Carbonaceous Species in Airborne Particulate in Seoul between 1986 and 1996

  • Hwang, Kyung-Chul;Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.11-20
    • /
    • 2003
  • To characterize airborne particulate carbon and its temporal variation in the heavily industrialized metropolitan city, Seoul in South Korea, aerosol sampling was performed from 1986 to 1996. Correlation coefficients of elemental carbon (EC) and organic carbon (OC) with mass concentration of fine particles ($\underline{\leq}$2.1 ${\mu}m$) are 0.73 and 0.51, respectively. EC concentrations of the fine particle mode are 10.1, 5.9, 4.5, and 7.4 ${\mu}g\;m^{-3}$ in winter, spring, summer, and autumn, respectively. On the other hand, OC concentration shows maximum value in winter and followed by autumn, summer, and spring. A seasonal peak in the ratio of OC to EC in fine particles was observed during the summer photochemical season from June to August. Concentrations of EC and OC in Asian dust storm events are generally higher than in non- Asian dust storm events except in 1990. The difference of EC concentrations between Asian dust storm periods and non-Asian dust storm periods are much larger than those of OC concentrations. There are slight increases of EC concentration between 1987 and 1990 and a gradual decrease between 1990 and 1996.

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF

Numerical Simulations of the Storm Surges in the Seas Around Korea (한국(韓國) 근해(近海)의 폭풍(暴風) 해일(海溢) 수식(數植) 시뮬레이션)

  • OH, IM SANG;KIM, SEONG IL
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.161-181
    • /
    • 1990
  • A numerical model is established in order to simulate the storm surges which were observed in the seas around Korea during typhoon and winter storm periods. The typhoons are Brenda (1985), Vera (1986) and Thelma (1987). the winter storm period is January 1-6, 1986. The simulated surges for the typhoon periods show good agreements with the recorded ones for the periods at the Korean coasts, but those for the winter storm show fair agreements in general tendencies, not in details. The model simulation in open sea shows a positive sea level near the typhoon center and a native sea level behind the typhoon. the positive surge seems to be due to the low pressure near a typhoon center and the negative on due to the wind stresses of the typhoon. The negative sea level is usually in the form of an elongated gyre. In the gyre, there is a cyclonic circulation of sea water, in which the pressure gradient force induced by the circular depression of the sea surface is balanced by the Coriolis force in readjusting stage.

  • PDF

A Study on the Change of Wind Speed in South Korea: In Case of January and August (한국에서 풍속 변화에 관한 연구 -1월과 8월을 대상으로-)

  • Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.347-358
    • /
    • 2012
  • This study aimed to investigate the change of wind speed during winter and summer seasons for 50 years(1961-2010). It were analyzed the mean wind speed, maximum wind speed, windy days and storm days on January and August of 13 weather stations in South Korea. The mean wind speed was decreased in the coastal region(Busan, Jeju, Ulsan, Pohang) in winter and summer seasons. Also it was similar to windy day. The relationship between wind speed and mean temperature has negative correlation in winter season. The relationship is low in summer season. The number of windy day and storm day has negative relation with monthly mean temperature.

  • PDF

Urban Runoff and Water Quality Models (도시유역에서의 유출 및 수질해석 모형)

  • Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.709-725
    • /
    • 1998
  • The characteristics of storm and water quality are investigated based on the measuring data of the test river, the Hongje. the water quality of the test river is generally good comparing to other urban rivers in Seoul, because of the interception of sewer flow. But this system makes the river dry up for 3-4 months in winter. On the other hand, in rainy period the storm from the combined sewer system causes rapid increasing pollutants loads. In order to simulate the urban storm and water quality of the trest basin, the models such as SWMM, ILLUDAS, STORM, HEC-1 were applied and the results are compared in its applicability and accuracy aspects. All models discussed here have shown good results and it seems that SUMM is the most effective model in simulating both quantity and quality. Also, regression relations between the water quantity and quality were derived and their applicabilities were discussed. This regression model is a simple effective tool for estimating the pollutant loads in the rainy period, but if the amount of discharge is bigger than measuring range of raw data, the accuracy becomes poor. This model could be supplemented by expanding the range of collecting data and introducing the river characteristics. The HEC-1 would be anther effective model to simulate storm runoff of a river basin including urban area.

  • PDF

Distribution of Suspended Particulate Matters in the East China Sea, Southern Yellow Sea and South Sea of Korea During the Winter Season

  • Choi, Jin-Yong;Kim, Seok-Yun;Kang, Hyo-Jin
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.212-221
    • /
    • 2004
  • Concentrations of suspended particulate matters (SPM) and their distribution patterns were monitored three times in the East China Sea during the winter season in 1998 and 1999. SPM concentrations showed significant temporal variations controlled by the atmospheric conditions and sea states. In coastal area, SPM values were about 10-20 mg/l in fair weather conditions, but exceeded 100mg/l during the storm periods. Turbid waters were distributed widespread in the continental shelf of the East China Sea and the coastal area of the Korean Peninsula, and these two areas were connected along a NE-SW direction. The distribution patterns of turbid waters were interpreted as representing the transport behavior of suspended matter. Although the primary source of inner shelf mud deposits of Korea seems to be the Korean Peninsula, contribution from the East China Sea to the coastal area of Korea increases especially during the winter season.

Seasonal Accumulation Pattern and Preservation Potential of Tidal-flat Sediments: Gomso Bay, West Coast of Korea (조간대 퇴적물의 계절적 집적양상과 보존: 한국 서해안의 곰소만)

  • Chang, Jin-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1998
  • Seasonal changes of topography, sediment grain size and accumulation rate in the Gomso-Bay tidal flat, west coast of Korea, have been studied in order to understand the seasonal accumulation pattern and preservation potential of the tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheniers accelerates during the winter and typhoon periods, but it almost stops in summer when mud deposition is instead predominant at the middle and upper tidal flats. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods. Measurements of accumulation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface. The upper tidal flat where the accumulation rate of summer was generally higher than that of winter was characterized by a continuous deposition throughout the entire year, whereas in the middle tidal flat, sediment accumulations were concentrated in winter relative to summer and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Can cores taken across the tidal flat reveal that sand-mud interlayers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore. Based on above results, it is suggested that the storm deposits by winter storms and typhoons would consist of the major part of the Gomso-Bay sediments.

  • PDF

On the Variation of Sea Level Due to Meteorological Disturbances on the Coast of Korea. I. Storm Surges Caused by Typhoon Billie, 1970, on the West and South Coasts of Korea (한국연안에 있어서 기상 교란에 의한 해면변화 I. 태풍 빌리호(1970년)와 남 서해안의 이상고조현상)

  • Hwang, Chin-Pung
    • 한국해양학회지
    • /
    • v.6 no.2
    • /
    • pp.92-98
    • /
    • 1971
  • Storm surges caused by typhoon Billie, 28 Aug. ∼ 2 Sep. 1970, on the west and south coasts of Korea are studied with the tidal data. Tracks and frequencies of the typhoons which affected the Korean peninsula and the yearly maximum tidal deviation at tide stations for the past twelve years are also reviewed. It is assumed that most of the typhoons affecting the Korea peninsula cause variations of sea level along almost all of the coast of Korea. Maximum storm surges at each tide station on the south coast appeared to be caused by typhoons during the summer, and by the north westerly monsoon and extraordinary cyclones on the west coast during spring and winter. In the coastal waters of the west coast where depths are shallower and the bottom configuration is flat, sea level variation is mostly caused by atmospheric pressure and wind effect. When a typhoon travels as in case of typhoon Billie, sea level ascends generally on the south coast and it descends on the west coast before the typhoon approaches near to the coasts. Considering the large tidal range on the western and southern coasts, it is assumed that the extraordinary destructive surges can be occurred when the tide is high water. Reviewing the monthly mean sea level variations on the each coast, hazards to be caused by storm surges can more fluently occur during the summer.

  • PDF