• Title/Summary/Keyword: winkler-pasternak foundation

Search Result 174, Processing Time 0.029 seconds

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

Free vibration of FG-GPLRC conical panel on elastic foundation

  • Eyvazian, Arameh;Musharavati, Farayi;Tarlochan, Faris;Pasharavesh, Abdolreza;Rajak, Dipen Kumar;Husain, Mohammed Bakr;Tran, Tron Nhan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • Present research is aimed to investigate the free vibration behavior of functionally graded (FG) nanocomposite conical panel reinforced by graphene platelets (GPLs) on the elastic foundation. Winkler-Pasternak elastic foundation surrounds the mentioned shell. For each ply, graphaene platelets are randomly oriented and uniformly dispersed in an isotropic matrix. It is assumed that the Volume fraction of GPLs reainforcement could be different from layer to layer according to a functionally graded pattern. The effective elastic modulus of the conical panel is estimated according to the modified Halpin-Tsai rule in this manuscript. Cone is modeled based on the first order shear deformation theory (FSDT). Hamilton's principle and generalized differential quadrature (GDQ) approach are also used to derive and discrete the equations of motion. Some evaluations are provided to compare the natural frequencies between current study and some experimental and theoretical investigations. After validation of the accuracy of the present formulation and method, natural frequencies and the corresponding mode shapes of FG-GPLRC conical panel are developed for different parameters such as boundary conditions, GPLs volume fraction, types of functionally graded and elastic foundation coefficients.

Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation (탄성지지된 집중질량을 갖는 변단면 후판의 진동해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

Nonlinear vibration of SSMFG cylindrical shells with internal resonances resting on the nonlinear viscoelastic foundation

  • Kamran, Foroutan;Habib, Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.767-782
    • /
    • 2022
  • In this paper, the nonlinear vibration behavior of the spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells exposed to the thermal environment and a uniformly distributed harmonic loading using a semi-analytical method is investigated. The cylindrical shell is surrounded by a nonlinear viscoelastic foundation consisting of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The distribution of temperature and material constitutive of the stiffeners are continuously changed through the thickness direction. The cylindrical shell has three layers consisting of metal, FGM, and ceramic. The interior layer of the cylindrical shell is rich in metal, while the exterior layer is rich in ceramic, and the FG material is located between two layers. The nonlinear vibration problem utilizing the smeared stiffeners technique, the von Kármán equations, and the Galerkin method has been solved. The multiple scales method is utilized to examine the nonlinear vibration behavior of SSMFG cylindrical shells. The considered resonant case is 1:3:9 internal resonance and subharmonic resonance of order 1/3. The influences of different material and geometrical parameters on the vibration behavior of SSMFG cylindrical shells are examined. The results show that the angles of stiffeners, temperature, and elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties

  • Lal, Achchhe;Jagtap, Kirankumar R.;Singh, Birgu N.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.165-194
    • /
    • 2017
  • The present work proposes the thermo mechanically induced statistics of nonlinear transverse central deflection of elastically supported functionally graded (FG) plate subjected to static loadings with random system properties. The FG plate is supported on two parameters Pasternak foundation with Winkler cubic nonlinearity. The random system properties such as material properties of FG material, external loading and foundation parameters are assumed as uncorrelated random variables. The material properties are assumed as non-uniform temperature distribution with temperature dependent (TD) material properties. The basic formulation for static is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics through Newton-Raphson method. A second order perturbation technique (SOPT) and direct Monte Carlo simulation (MCS) are used to compute the nonlinear governing equation. The effects of load parameters, plate thickness ratios, aspect ratios, volume fraction, exponent, foundation parameters, and boundary conditions with random system properties are examined through parametric studies. The results of present approaches are compared with those results available in the literature and by employing direct Monte Carlo simulation (MCS).