• 제목/요약/키워드: winkler's foundation

검색결과 150건 처리시간 0.021초

Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium

  • Cetin, Dogan;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.583-594
    • /
    • 2011
  • In the present study, free vibration of an axially functionally graded (AFG) pile embedded in Winkler-Pasternak elastic foundation is analyzed within the framework of the Euler-Bernoulli beam theory. The material properties of the pile vary continuously in the axial direction according to the power-law form. The frequency equation is obtained by using Lagrange's equations. The unknown functions denoting the transverse deflections of the AFG pile is expressed in modal form. In this study, the effects of material variations, the parameters of the elastic foundation on the fundamental frequencies are examined. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Winkler형 지반위에 놓인 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations)

  • 오상진;이병구;이인원
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element

  • Ozdemir, Yaprak I.
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.359-368
    • /
    • 2019
  • This paper focuses on the study of dynamic analysis of thick plates resting on Winkler foundation. The governing equation is derived from Mindlin's theory. This study is a parametric analysis of the reflections of the thickness / span ratio, the aspect ratio and the boundary conditions on the earthquake excitations are studied. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. While using finite element method, a new element is used. This element is 17-noded and it's formulation is derived from using higher order displacement shape functions. C++ program is used for the analyses. Graphs are presented to help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that the 17-noded finite element is used in the earthquake analysis of thick plates. It is shown that the changes in the aspect ratio are more effective than the changes in the aspect ratio. The center displacements of the reinforced concrete thick clamped plates for b/a=1, and t/a=0.2, and for b/a=2, and t/a=0.2, reached their absolute maximum values of 0.00244 mm at 3.48 s, and of 0.00444 mm at 3.48 s, respectively.

Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation

  • Suchart Limkatanyu;Worathep Sae-Long;Nattapong Damrongwiriyanupap;Piti Sukontasukkul;Thanongsak Imjai;Thanakorn Chompoorat;Chayanon Hansapinyo
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.69-84
    • /
    • 2023
  • This paper proposes a novel frame element on Winkler-Pasternak foundation for analysis of a non-ductile reinforced concrete (RC) member resting on foundation. These structural members represent flexural-shear critical members, which are commonly found in existing buildings designed and constructed with the old seismic design standards (inadequately detailed transverse reinforcement). As a result, these structures always experience shear failure or flexure-shear failure under seismic loading. To predict the characteristics of these non-ductile structures, efficient numerical models are required. Therefore, the novel frame element on Winkler-Pasternak foundation with inclusion of the shear-flexure interaction effect is developed in this study. The proposed model is derived within the framework of a displacement-based formulation and fiber section model under Timoshenko beam theory. Uniaxial nonlinear material constitutive models are employed to represent the characteristics of non-ductile RC frame and the underlying foundation. The shear-flexure interaction effect is expressed within the shear constitutive model based on the UCSD shear-strength model as demonstrated in this paper. From several features of the presented model, the proposed model is simple but able to capture several salient characteristics of the non-ductile RC frame resting on foundation, such as failure behavior, soil-structure interaction, and shear-flexure interaction. This confirms through two numerical simulations.

Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory

  • Zenkour, Ashraf M.
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.309-326
    • /
    • 2016
  • The buckling response of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is presented. The nonlocal first-order shear deformation elasticity theory is used for this purpose. The visco-Pasternak's medium is considered by adding the damping effect to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's (shear) foundation modulus. The SLGS be subjected to distributive compressive in-plane edge forces per unit length. The governing equilibrium equations are obtained and solved for getting the critical buckling loads of simply-supported SLGSs. The effects of many parameters like nonlocal parameter, aspect ratio, Winkler-Pasternak's foundation, damping coefficient, and mode numbers on the buckling analysis of the SLGSs are investigated in detail. The present results are compared with the corresponding available in the literature. Additional results are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제19권2호
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • 제17권3호
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.

Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation

  • Xiangqian Shen;Tong Li;Lei Xu;Faraz Kiarasi;Masoud Babaei;Kamran Asemi
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.11-26
    • /
    • 2024
  • In this study, free vibration analysis of FG porous spherical cap reinforced by graphene platelets resting on Winkler-type elastic foundation has been surveyed for the first time. Three different types of porosity patterns are considered for the spherical cap whose two types of porosity patterns in the metal matrix are symmetric and the other one is uniform. Besides, five GPL patterns are assumed for dispersing of GPLs in the metal matrix. Tsai-Halpin and extended rule of the mixture are used to determine the Young modulus and mass density of the shell, respectively. Employing 3D FEM elasticity in conjunction with Hamilton's Principle, the governing motion equations of the structure are obtained and solved. The impact of various parameters including porosity coefficient, various porosity distributions in conjunction with different GPL patterns, the weight fraction of graphene Nano fillers, polar angles and stiffness coefficient of elastic foundation on natural frequencies of FG porous spherical cap reinforced by GPLs have been reported for the first time.

2층 탄성기초위에 놓인 불균일 테이퍼진 보의 진동과 안정성 (Vibration and Stability of Non-uniform Tapered Beams resting on a Two-Layered Elastic Foundation)

  • 류봉조;임경빈;이종원;한재섭
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.828-834
    • /
    • 1999
  • The paper describes the vibration and the stability of nonuniform tapered beams resting on two-layered elastic foundations. The two-layered elastic foundations are constructed by discributed Winkler springs and shearing layers as ofen used in oil models. Governing equations are derived from energy experssions using Hamilton's Principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration and the stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies and critical forces are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters, and boundary conditions of tapered beams.

  • PDF