• Title/Summary/Keyword: wine analysis

Search Result 252, Processing Time 0.02 seconds

Characteristics of Ju-Back and Effect of Ju-Back Fertilizer on Growth of Crop Plants (주류생산 부산물인 주박의 특성 규명 및 주박이 작물생육에 미치는 영향)

  • Lee, Jung-Hoon;Park, Sung-Min;Park, Chi-Duck;Jung, Hyuck-Jun;Kim, Hyun-Soo;Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1562-1570
    • /
    • 2007
  • This experiment was conducted to develop fertilizer which promotes plant growth as well as suppressing pathogenic fungi. The fertilizer was made from the mixture of Ju-Back (Korean rice wine cake) and indigenous rhizosphere-bacterium. The main ingredients of Ju-Back were investigated as 6.04% total nitrogen, 42.59% total carbohydrate, 1.01% available phosphate, 73.42% organic matter, 7.72% potassium oxide, 1.35% calcium oxide, 0.53% magnesium oxide. The enzyme activities of Ju-Back were estimated to be 980 units/g for ${\alpha}-amylase$, 300 units/g for glucoamylase, and 1800 units/g for acid pretense. Indigenous rhizosphere bacteria which produced antifungal agent were isolated from soil, and was selected KMU-13 strain which can antagonize against various plant pathogenic fungi (Botrytis cinerea KACC 40573, Sclerotinia sclerotiorum KACC 41065, Fusairum oxysporum KACC 40052, Pythium aphanidermatum KACC 40156, Phytophthora capsici KACC 40476 and Glomerella cingulata KACC 40299). KMU-13 strain was identified as Bacillus subtilis KMU-13 by biochemical and 16s rDNA analysis. The organic fertilizer was made as prototype which was composed 20% Ju-Back, 70% carrier, 9.7% microorganism cultivated solution, 0.3% trace-element. We also investigated an application of fertilizer using Ju-Back for cultivating lettuce (Lactuca sativar) which were grown in three soil conditions that had chemical fertilizer, barnyard manure, lime power, urea, potassium chloride and superphosphate as a control, the whole quantity (80 kg/10a) of posted fertilizer with the control and the half quantity (40 kg/10a) with the control. The growth characteristics were examined and analysed with several weeks interval from 3 weeks to 8 weeks on head length (cm), head width (cm/head), number of leaf and fresh weight (g/plant). The results are summarized as follows. The head width and fresh weight of lettuce were the highest at posted fertilizer 1 (whole quantity) was applied chemical, organic matter (Ju-Back) and carrier. The head length was the highest at posted fertilizer 2 (whole quantity) was applied Ju-Back only.

Anti-proliferative Activities of Solvent Fractions of Lees Extracts in Human Colorectal HCT116 Cells (대장암 세포주에서 주박 추출물의 유기용매 분획물의 항성장 활성)

  • Kang, Hyung-Taek;Lee, Seung Hoon;Kim, Soon Young;Kim, Mi-Sun;Shin, Woo-Chang;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • In the present study, we prepared eighty-five different kinds of lees extracts and their solvent fractions and investigated their anti-proliferative activities against human colorectal cancer HCT116 cells. HCT116 cells were treated with eighty-five solvent fractions of lees extracts and then cell viability was measured using MTS assay. Among the treated solvent fractions, three solvent fractions (KSD-E1-3, KSD-E2-3, and KSD-E4-3) were selected based on cell viability assay. In addition, we performed an oligo DNA microarray analysis to analyze the gene expression changes by treatment of KSD-E1-3 in HCT116 cells. Among the upregulated genes, we selected 4 genes (NAG-1, ATF3, p21, and DDIT3) and performed RT-PCR using gene-specific primers. Among the treated solvent fractions, KSD-E1-3 dramatically induced the expressions of the four selected genes. In addition, we investigated whether the upregulations of those genes were dependent on the transcription factor p53's presence using p53 null HCT116 cells. The results indicate that the upregulations of NAG-1, ATF3, and DDIT3 are not dependent on the p53 presence, whereas p21 is dependent on the p53 presence. These findings may help to understand the molecular mechanisms of the anti-proliferative activity mediated by rice wine lees in human colorectal cancer cells.