• Title/Summary/Keyword: windowing

Search Result 116, Processing Time 0.025 seconds

Detection Probability Improvement Scheme Optimized for Frequency-Hopping Signal Detection (주파수 도약 신호 탐지에 최적화된 탐지 확률 향상 기법)

  • Lee, In-Seok;Oh, Seong-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.783-790
    • /
    • 2018
  • The frequency-hopping technique is one of the spread-spectrum techniques. Frequency hopping is a communication system in which the carrier frequency channel is hopped within the wideband. Therefore, a frequency-hopping system has such advantages as antijamming and low probability of intercept. This system is often used in military communications. Because frequency-hopping signal detection is difficult, it is an important research issue. A novel detection technique is proposed that can improve detection probability. When the received signal is transformed to a frequency domain sample by fast Fourier transform, spectral leakage lowers the detection probability. This problem can be solved by using the Hamming window, and the detection probability can be increased. However, in a frequency-hopping environment, the windowing technique lowers the detection probability. The proposed method solves this weakness. The simulation results show that the proposed detection technique improves the detection probability by as much as 13 %.

Performance A Analysis of OFDM/QPSK-DMR System Using BL-PSF over Microwave Channel Environments (Microwave 채널환경에서 BL-PSF를 적용하는 OFDM/QPSK-DMR 시스템의 성능분석)

  • Ahn, Jun-bae;Yang, Hee-jin;Oh, Chang-heon;Cho, Sung-joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1279-1288
    • /
    • 2004
  • In this paper, the DMR(Digital Microwave Radio) system-based OFDM(Orthogonal Frequency Division Multiplexing) scheme in microwave channel environments has been proposed and system performances have been evaluated. The existing single carrier DMR system has a complex system structure due to using high-level QAM(Quadrature Amplitude Modulation) modulation scheme and so charmel capacity is limited by sensitive effects from fading. Therefore, in the proposed DMR system, it uses that the OFDM scheme for enhancement of fading distortion and also uses that the band-limited pulse shaping filter instead of windowing for no additional data such as GI/GB and for using efficient of IFFT/FFT block. The performance of OFDM/QPSK-DMR system and single carrier DMR system are analysed by computer simulation using two-ray model under the microwave channel environments The computer simulation results confirm that the fade margin of the proposed OFDM/QPSK-DMR system is highly increased as the number of sub-carriers is larger.

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

Performance Analysis of Clock Recovery for OFDM/QPSK-DMR System Using Band Limited-Pulse Shaping Filter (대역 제한 필터를 이용하는 OFDM/QPSK-DMR 시스템을 위한 클럭 복조기의 성능 분석)

  • 안준배;양희진;강희곡;오창헌;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.245-249
    • /
    • 2004
  • In this paper, we have proposed a clock recovery algorithm of Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio(OFDM/QPSK-DMR) system using Band Limited-Pulse Shaping Filter(BL-PSF) and compared the clock phase error variance of OFDM/QPSK-DMR system with that of single carrier DMR system. The OFDM/QPSK-DMR system using windowing method requires training sequence or Cyclic Prefix (CP) to synchronize the clock phase of received signal. But transmit efficient is increased in our proposed DMR system because of no using redundant data such as training sequence or CP. The proposed clock recovery algorithm is simply realized in the OFDM/QPSK-DMR system using BL-PSF. The simulation results confirm that the proposed clock recovery algorithm has the same clock phase error variance performance in a single carrier DR system under Additive White Gaussian Noise(AWGN) environment.

Speckle Reduction Method in Wavelet Domain for OCT Image Enhancement (OCT 영상 개선을 위한 웨이블릿 영역에서의 Speckle 저감 방법)

  • Lee Chang-Su;Na Ji-Hoon;Lee Byeong-Ha;Chang Ju-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.364-370
    • /
    • 2006
  • Optical coherence tomography (OCT) is high resolution medical imaging system which is obtaining image inside biological objects with non-destructive method. OCT system is based on Michelson interferometer with a reciprocating mirror in the reference arm and a biological object in the sample arm. The obtained OCT image suffers from a granular or mottled image, called speckle. Speckle is caused by random interferences between reflected coherence waves. In this paper, we propose effective speckle reduction method that uses wavelet transform. With wavelet domain image, sub-windowing and thresholding are performed. Finally, speckle reduction experiments for Misgurnus mizolepis skin and rat eye images are shown.

Speckle noise elimination of ultrasonic images by using generalized noise model and adaptive weighted median filter (일반형 잡음모델과 적응성 가중 메디안 필터를 이용한 초음파 영상의 스펙클 잡음 제거)

  • 윤귀영;안영복
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.89-101
    • /
    • 1997
  • A technical method of noise modeling and adaptive filtering reducing of speckle noise in ultrasonic medical images is presented. By adjusting the characteristics of the filer according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in diagnosis. Homogeneous factor(HF) from the noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the diagnostic systems with various inner statistical properties is proposed. We show by the experimented that the performance of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region.

  • PDF

A Study on the Peak cancellation Technique of OFDM considering of the HPA characteristic (HPA 특성을 고려한 OFDM의 Peak cancellation기법)

  • Lee, Seung-Sun;Oh, Tae-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.69-74
    • /
    • 2005
  • The High Peak to Average Power Ratio (PAPR) could be a severe Problem in OFDM performance since it causes the significant distortion to the transmitting signal through a nonlinear device such as High Power Amplifier (HPA). In this paper, the performance of Peak cancellation method according to the HPA characteristic is comparatively analyzed with the clipping and windowing methods. The BER performances and the out-band power spectrums are demonstrated in detail.

  • PDF

Application of the Cepstrum Signal Processing Technique for the Noise Reflection Path Analysis in Community Noise (소음전달경로 분석 : 켑스트럼(Cepstrum) 적용방안에 관한 연구)

  • Hong, Yun-H.;Kim, Jeung-T.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • Community noise has been great concerned in public. A traffic noise from a road or a railway has affected too mush damage on quiet living environment. In this paper, a measured noise signal on a street has been applied to extract a noise source and a path by using a complex cepstrum. An example shows that the waveform of the source and the path could be separated if a temporal windowing is properly applied.

Improvement and Verification of the Wear Volume Calculation

  • Kim, Hyung-Kyu;Lee, Young-Ho
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • A technique for a wear volume calculation is improved and verified in this research. The wear profile data measured by a surface roughness tester is used. The present technique uses a data flattening, the FFT and the windowing procedure, which is used for a general signal processing. The measured value of an average roughness of an unworn surfnce is used for the baseline of the integration for the volume calculation. The improvements from the previous technique are the procedures of the data flattening and the determination of a baseline. It is found that the flattening procedure efnciently manipulates the raw data when the levels of it are not horizontal, which enables us to calculate the volume reasonably well and readily. By comparing it with the weight loss method by using artificial dents, the present method reveals more volume by aroung 3~10%. It is attributed to the protruded region of the specimen and the inaccuracy and data averaging during the weght loss measurement. From a thorough investigation, it is concluded that the present technique can provide an accurate wear volume.

Development of a smart wireless sensing unit using off-the-shelf FPGA hardware and programming products

  • Kapoor, Chetan;Graves-Abe, Troy L.;Pei, Jin-Song
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.69-88
    • /
    • 2007
  • In this study, Field-Programmable Gate Arrays (FPGAs) are investigated as a practical solution to the challenge of designing an optimal platform for implementing algorithms in a wireless sensing unit for structuralhealth monitoring. Inherent advantages, such as tremendous processing power, coupled with reconfigurable and flexible architecture render FPGAs a prime candidate for the processing core in an optimal wireless sensor unit, especially when handling Digital Signal Processing (DSP) and system identification algorithms. This paper presents an effort to create a proof-of-concept unit, wherein an off-the-shelf FPGA development board, available at a price comparable to a microprocessor development board, was adopted. Data processing functions, including windowing, Fast Fourier Transform (FFT), and peak detection, were implemented in the FPGA using a Matlab Simulink-based high-level abstraction tool rather than hardware descriptive language. Simulations and laboratory tests were carried out to validate the design.