• Title/Summary/Keyword: window detection

Search Result 432, Processing Time 0.026 seconds

Deep Window Detection in Street Scenes

  • Ma, Wenguang;Ma, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.855-870
    • /
    • 2020
  • Windows are key components of building facades. Detecting windows, crucial to 3D semantic reconstruction and scene parsing, is a challenging task in computer vision. Early methods try to solve window detection by using hand-crafted features and traditional classifiers. However, these methods are unable to handle the diversity of window instances in real scenes and suffer from heavy computational costs. Recently, convolutional neural networks based object detection algorithms attract much attention due to their good performances. Unfortunately, directly training them for challenging window detection cannot achieve satisfying results. In this paper, we propose an approach for window detection. It involves an improved Faster R-CNN architecture for window detection, featuring in a window region proposal network, an RoI feature fusion and a context enhancement module. Besides, a post optimization process is designed by the regular distribution of windows to refine detection results obtained by the improved deep architecture. Furthermore, we present a newly collected dataset which is the largest one for window detection in real street scenes to date. Experimental results on both existing datasets and the new dataset show that the proposed method has outstanding performance.

Fast Extraction of Pedestrian Candidate Windows Based on BING Algorithm

  • Zeng, Jiexian;Fang, Qi;Wu, Zhe;Fu, Xiang;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In the field of industrial applications, the real-time performance of the target detection problem is very important. The most serious time consumption in the pedestrian detection process is the extraction phase of the candidate window. To accelerate the speed, in this paper, a fast extraction of pedestrian candidate window based on the BING (Binarized Normed Gradients) algorithm replaces the traditional sliding window scanning. The BING features are extracted with the positive and negative samples and input into the two-stage SVM (Support Vector Machine) classifier for training. The obtained BING template may include a pedestrian candidate window. The trained template is loaded during detection, and the extracted candidate windows are input into the classifier. The experimental results show that the proposed method can extract fewer candidate window and has a higher recall rate with more rapid speed than the traditional sliding window detection method, so the method improves the detection speed while maintaining the detection accuracy. In addition, the real-time requirement is satisfied.

Cascade Selective Window for Fast and Accurate Object Detection

  • Zhang, Shu;Cai, Yong;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1227-1232
    • /
    • 2015
  • Several works help make sliding window object detection fast, nevertheless, computational demands remain prohibitive for numerous applications. This paper proposes a fast object detection method based on three strategies: cascade classifier, selective window search and fast feature extraction. Experimental results show that the proposed method outperforms the compared methods and achieves both high detection precision and low computation cost. Our approach runs at 17ms per frame on 640×480 images while attaining state-of-the-art accuracy.

Detection of a Land and Obstacles in Real Time Using Optimal Moving Windows (최적의 Moving Window를 사용한 실시간 차선 및 장애물 감지)

  • Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.57-69
    • /
    • 2000
  • A moving window technique for detecting a lane and obstacles using the Images captured by a CCD camera attached in an automobile, is proposed in this paper To process the dynamic images in real time, there could be many constraints on the hardware To overcome these hardware constraints and to detect the lane and obstacles in real time, the optimal size of window IS determined based upon road conditions and automobile states. By utilizing the sub-Images inside the windows, detection of the lane and obstacles become possible m real time. For each Image frame, the moving windows are re-determined following the predicted directions based on Kalman filtering theory to Improve detection accuracy, as well as efficiency The feasibility of proposed algorithm IS demonstrated through the simulated experiments of highway driving.

  • PDF

Landmine Detection System using a Target-adaptive Window Selection Method (표적 적응형 윈도우 기법을 적용한 지뢰 탐지 시스템)

  • Kim, Min Ju;Kim, Seong-Dae;Paeng, Kyunghyun;Hahm, Jong-Hun;Han, Seung-Hoon;Lee, Seung-Eui
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.201-208
    • /
    • 2014
  • The performance of a landmine detection system depends on consistent extractions of the features of landmines. Since landmines have diverse sizes, it is critical to select an appropriate window size to represent the landmine region consistently. Conventional detection systems are incapable of extracting consistent landmine features because they employ fixed window sizes. This paper proposes a window size selection method according to the size of a landmine. The proposed method selects an appropriate window size based on the type of a landmine estimated from the response signal of the system. Data on various types of soils and landmines were generated from a simulation program to evaluate the performance of the proposed method. The results verified that the proposed method, which employs an adaptive window size, yields a better landmine detection rate than the conventional methods, which employ fixed window sizes.

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.

Partial Spectrum Detection and Super-Gaussian Window Function for Ultrahigh-resolution Spectral-domain Optical Coherence Tomography with a Linear-k Spectrometer

  • Hyun-Ji, Lee;Sang-Won, Lee
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.73-82
    • /
    • 2023
  • In this study, we demonstrate ultrahigh-resolution spectral-domain optical coherence tomography with a 200-kHz line rate using a superluminescent diode with a -3-dB bandwidth of 100 nm at 849 nm. To increase the line rate, a subset of the total number of camera pixels is used. In addition, a partial-spectrum detection method is used to obtain OCT images within an imaging depth of 2.1 mm while maintaining ultrahigh axial resolution. The partially detected spectrum has a flat-topped intensity profile, and side lobes occur after fast Fourier transformation. Consequently, we propose and apply the super-Gaussian window function as a new window function, to reduce the side lobes and obtain a result that is close to that of the axial-resolution condition with no window function applied. Upon application of the super-Gaussian window function, the result is close to the ultrahigh axial resolution of 4.2 ㎛ in air, corresponding to 3.1 ㎛ in tissue (n = 1.35).

Reduction of False Alarm Signals for PIR Sensor in Realistic Outdoor Surveillance

  • Hong, Sang Gi;Kim, Nae Soo;Kim, Whan Woo
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • A passive infrared or pyroelectric infrared (PIR) sensor is mainly used to sense the existence of moving objects in an indoor environment. However, in an outdoor environment, there are often outbreaks of false alarms from environmental changes and other sources. Therefore, it is difficult to provide reliable detection outdoors. In this paper, two algorithms are proposed to reduce false alarms and provide trustworthy quality to surveillance systems. We gather PIR signals outdoors, analyze the collected data, and extract the target features defined as window energy and alarm duration. Using these features, we model target and false alarms, from which we propose two target decision algorithms: window energy detection and alarm duration detection. Simulation results using real PIR signals show the performance of the proposed algorithms.

Development of a Real-Time Steady State Detector of a Heat Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장진단시스템 구축을 위한 정상상태 진단기 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2070-2075
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

Edge Detection using Windows with Adaptive Threshold (적응형 한계치를 갖는 윈도우를 이용한 에지 검출)

  • 송의석;오하랑;김준형
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1424-1433
    • /
    • 1995
  • The edge detection process serves to simplify the analysis of images by drastically reducing the amount of data to be processed, while preserving useful structural informations about object boundaries. At first, this paper proposes an edge detection algorithm to reduce the amount of computation. The gradients of pixels are calculated by using first order differential equations on the pixels with even rows and even columns or odd rows and odd columns, and they are compared with a threshold to decide edges. As a result, the computational complexity is reduced to one third or one forth compared with the provious ones. To enhance the accuracy of edge detection, a method with the adaptive threshold for each pixel window which is calculated by using characteristic values is proposed. In this case, the performance can be improved since the threshold is calculated properly for each window according to the local characteristics of corresponding window.

  • PDF