DOI QR코드

DOI QR Code

Partial Spectrum Detection and Super-Gaussian Window Function for Ultrahigh-resolution Spectral-domain Optical Coherence Tomography with a Linear-k Spectrometer

  • Hyun-Ji, Lee (Safety Measurement Institute, Korea Research Institute of Standards and Science) ;
  • Sang-Won, Lee (Safety Measurement Institute, Korea Research Institute of Standards and Science)
  • Received : 2022.09.30
  • Accepted : 2022.12.19
  • Published : 2023.02.25

Abstract

In this study, we demonstrate ultrahigh-resolution spectral-domain optical coherence tomography with a 200-kHz line rate using a superluminescent diode with a -3-dB bandwidth of 100 nm at 849 nm. To increase the line rate, a subset of the total number of camera pixels is used. In addition, a partial-spectrum detection method is used to obtain OCT images within an imaging depth of 2.1 mm while maintaining ultrahigh axial resolution. The partially detected spectrum has a flat-topped intensity profile, and side lobes occur after fast Fourier transformation. Consequently, we propose and apply the super-Gaussian window function as a new window function, to reduce the side lobes and obtain a result that is close to that of the axial-resolution condition with no window function applied. Upon application of the super-Gaussian window function, the result is close to the ultrahigh axial resolution of 4.2 ㎛ in air, corresponding to 3.1 ㎛ in tissue (n = 1.35).

Keywords

Acknowledgement

Development of Measurement Standards and Technology for Biomaterials and Medical Convergence, funded by the Korea Research Institute of Standards and Science (KRISS-GP2022-0006); Creative Materials Discovery Program (2018M3D1A1058814); Korea Medical Device Development Fund grants, funded by the Korean government (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0024 and KMDF_PR_20200901 _0026).

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. W. Yang, J. Hwang, and S. Moon, "Beam-scanning imaging needle for endoscopic optical coherence tomography," Curr. Opt. Photonics 5, 532-537 (2021).
  3. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). https://doi.org/10.1364/OL.24.001221
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). https://doi.org/10.1364/OL.26.000608
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). https://doi.org/10.1364/OPEX.12.002156
  6. T. H. Ko, D. C. Adler, J. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, "Ultrahigh resolution optical coherence tomography imaging with a broadband super-luminescent diode light source," Opt. Express 12, 2112-2119 (2004). https://doi.org/10.1364/OPEX.12.002112
  7. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12, 3532-3542 (2004). https://doi.org/10.1364/OPEX.12.003532
  8. D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, "Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging," J. Biomed. Opt. 16, 126006 (2011).
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). https://doi.org/10.1364/OE.11.000889
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183
  11. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 ㎛ wavelength," Opt Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598
  12. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). https://doi.org/10.1364/OE.14.003225
  13. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). https://doi.org/10.1364/OL.32.002049
  14. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005). https://doi.org/10.1364/OL.30.003159
  15. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010). https://doi.org/10.1364/OL.35.002919
  16. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16, 15149-15169 (2008). https://doi.org/10.1364/OE.16.015149
  17. L. An, P. Li, T. T. Shen, and R. Wang, "High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second," Biomed. Opt. Express 2, 2770-2783 (2011). https://doi.org/10.1364/BOE.2.002770
  18. Y. Zhang, M. Sato, and N. Tanno, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001). https://doi.org/10.1364/ol.26.000205
  19. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, "Image enhancement in optical coherence tomography using deconvolution," Electron. Lett. 33, 1365-1367 (1997). https://doi.org/10.1049/el:19970913
  20. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002). https://doi.org/10.1364/OL.27.000406
  21. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003). https://doi.org/10.1364/OL.28.001921
  22. E.-S. Choi, J.-H. Na, and B.-H. Lee, "Spatial resolution enhancement with fiber-based spectral filtering for optical coherence tomography," J. Opt. Soc. Korea 7, 216-223 (2003). https://doi.org/10.3807/JOSK.2003.7.4.216
  23. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi, "Unstable laser resonators with super-Gaussian mirrors," Opt. Lett. 13, 201-203 (1988). https://doi.org/10.1364/OL.13.000201
  24. M. Santarsiero and R. Borghi, "Correspondence between super-Gaussian and flattened Gaussian beams," J. Opt. Soc. Am. A 16, 188-190 (1999). https://doi.org/10.1364/JOSAA.16.000188
  25. Z. Hui, Z. Guilian, and D. Wang, "Super-Gaussian window function and its applications," in Proc. International Conference on Circuits and Systems (Shenzhen, China, Jun. 16-17, 1991), pp. 595-598.
  26. S.-W. Lee, H. Kang, J. H. Park, T. G. Lee, E. S. Lee, and J. Y. Lee, "Ultrahigh-resolution spectral domain optical coherence tomography based on a linear-wavenumber spectrometer," J. Opt. Soc. Korea 19, 55-62 (2015). https://doi.org/10.3807/JOSK.2015.19.1.055
  27. W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992). https://doi.org/10.1109/68.180591
  28. Y. Watanabe and T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506 (2009).
  29. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68-72 (2013). https://doi.org/10.3807/JOSK.2013.17.1.068
  30. P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing with Computer Applications, 1st ed. (Wiley, USA, 1989).