• Title/Summary/Keyword: winding process

Search Result 210, Processing Time 0.021 seconds

Development of embedded type antenna structure with NFC and WPC complex function (NFC 와 WPC 복합기능의 삽입형 안테나 복합체 개발)

  • Park, Rog-gook;Lee, Deok-soo;Jang, Jeong-sun
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.59-68
    • /
    • 2018
  • The objective of this study is to develop an embedded antenna structure with NFC and WPC composite functions. By selecting stable materials, the optimal component ratio of the polymer sheet was determined. The low cost embedded winding method compared to the existing FPCB was devised. During the winding process, characterization and process technology were developed. We also fabricated a ferrite mold to process the WPC grooves and developed the process technology for optimizing the WPC antenna. The following conclusions were obtained. (1) Optimum composition ratio was derived as Fe 87.5%, Si 7%, Al 5.5% and selected as the final material. (2) Optimal sheet conditions were derived from the experimental evaluation method and the experimental design method through the combination test of the optimized sheet and the conventional mass production FPCB. (3) According to coil diameter and inner diameter, Q value fluctuation, resistance value and efficiency fluctuation are obtained. Therefore, the most suitable coil condition is selected and Rx matching is performed. (4) The EMV load modulation test and the cognitive distance test of the polymer sheet and the ferrite sheet showed that the recognition distance of the polymer sheet at 1k and 4K was 32-33 mm and the recognition distance of the ferrite sheet at the same condition was 30-31 mm.

Fabrication and evaluation of superconducting properties of HIS PIT long tapes (고온초전도 PIT 장선재 제조 및 특성 평가)

  • Ha, Hong-Soo;Lee, Dong-Hoon;Yang, Joo-Saeng;Hwang, Sun-Yuk;Choi, Jung-Kyu;Kim, Sang-Chul;Ha, Dong-Woo;Oh, Sang-Soo;Kwon, Young-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.597-600
    • /
    • 2003
  • Bi-2223/Ag HTS wires have been fabricated by the PIT(powder in tube)process. Intermediate annealing was carried out to increase the homogenization and uniformity of the superconducting filaments embedded in the silver matrix during the deformation process that is important to sustain the engineering critical current density in long superconducting wire. Intermediate annealing act to release the deformation hardening of the superconducting wires during drawing process. Rolling parameters were investigated to roll the superconducting tapes with uniform thickness, width and winding tensions. Critical current of 60 m long superconducting tapes was measured 54.3 A continuously after final sintering heat treatment. The phase analysis of Bi-2223/Ag superconducting tapes are examined by the XRD.

  • PDF

The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling (열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구)

  • Jeon, J.B.;Lee, K.H.;Han, J.G.;Jung, J.W.;Kim, H.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

The Improvement of Survivability of Fiber Brags Grating Sensors Embedded into Filament Wound Pressure Tanks (필라멘트 와인딩된 복합재료 압력탱크에 삽입된 광섬유 브래그 격자 센서의 생존율 향상)

  • Kang, D. H.;Park, S. W.;Park, S. O.;Kim, C. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. For this reason, it is necessary to monitor the tank through its operation as well as whole fabrication process. A large number of sensors must be embedded into multi points of the tank from its fabrication step for monitoring the whole tank. Fiber optic sensors, especially fiber Bragg grating(FBG) sensors are widely used for various applications because of good multiplexing capabilities. However, we need to develop the embedding technique of FBG sensors into harsh inner environment of the tank far the successful embedment. In this paper, we studied the embedding technique of a number of FBG sensors into filament wound pressure tanks considering multiplexing.

A Study on Microscopic Deformation Behaviors of $Nb_3Sn$ Superconducting Composite Tape using Acoustic Emission Technique ($Nb_3Sn$ 복합초전도 테이프의 미시적 변형거동 특성평가를 위한 음향방출기법 적용에 관한 연구)

  • 이민래;이준현
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 1999
  • Since the surface diffusion processed $Nb_3Sn$ superconducting tape has the advantage of having large overall critical current density. it is used for the construction of open type MRI superconducting magnets. However one of the disadvantages of this tape is that $Nb_3Sn$ compound often exhibited multiple cracking due to its intrinsic brittleness when subjected to mechanical loading such as bending and winding during the fabrication process for superconducting coil. This will eventually cause the severe degradation of critical current density. Therefore it is important to understand the microscopic deformation behavior of this kind of superconducting tape under the mechanical loading.In this study, acoustic emission(AE) was used to clarify microscopic deformation behavior at room temperature for $Nb_3Sn$ superconducting tape which was strengthened and stabilized with copper. For this purpose, special attention was paid to AE characteristics including AE event, energy, and amplitude distribution which were associated with microscopic mechanism of deformation of $Nb_3Sn$ superconducting tape under tensile load.

  • PDF

A study on the vibration characteristics of carbon/epoxy propeller shaft (카본/에폭시 복합재로 제작된 수송기계용 추진축의 진동특성에 관한 연구)

  • 여운기;김희송;공창덕;정종철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.31-39
    • /
    • 2001
  • Composite propeller shafts for a vehicle have major advantages such as reduction of vibration, noise, and weight. A propeller shaft was designed with a carbon/epoxy composite material using the finite element method(FEM), and prototype shafts for tests were manufactured by the filament winding manufacturing process. In order to verify the design procedure by FEM, Two kinds of experimental tests were carried out using a FFT analyzer with impact hammers and a critical speed measuring apparatus for measurement of natural frequencies and critical speeds. The difference between the FEM analysis result and the test result was less than 3.4%, showing FEM analysis results to be acceptable. The parametric study was focused on determining the factor affecting the vibration and strength characteristics of the propeller shaft based on FEM. In investigation of the change in natural frequency without an increase in propeller shaft weight, it was found that the winding angle is the most significant factor affecting the vibration and strength characteristics.

  • PDF

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers (몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작)

  • Lee, Gyeong-Yeol;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.594-602
    • /
    • 2022
  • Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Continuous PTFE Coating Process on Basalt Sewing Thread (현무암 재봉사의 연속식 테프론 코팅 공정)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • On the basis of our previous research results concerning a batch Teflon coating process on the surface of basalt fiber which has superior fire-resistance and chemical resistance, we have tried to set up suitable operating conditions for continuous polytetrafluoroethylene(PTFE) coating process. The basalt fiber was continuously pre-treated with 7.5 wt%(6.5% of DPU) of triethoxytrifluoropropylsilane(TMTFPS) and then coated with 20 wt% of PTFE dispersions containing 0.25 wt% of penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to get the highest tensile and loop strengths. After dipping process, the PTFE coated basalt fiber was dried under 2 m drying chamber at $120^{\circ}C$ with 12 m/min of winding speed and consequently sintered under 2 m sintering chamber at $380^{\circ}C$ for 40 s. Conclusively, PTFE coated basalt fiber whose tensile and loop strengths were to $3.4g_f/D$ and $2.3g_f/D$, respectively, applicable to high temperature sewing thread could be continuously prepared with our pilot scale process under optimum conditions.

Analysis and Performance of the Self Excited Eddy Current Brake

  • Cho, Sooyoung;Jeong, Teachul;Bae, Jaenam;Yoo, Changhee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.459-465
    • /
    • 2017
  • This paper describes a performance analysis of self-excited eddy current brake(SECB). Stator winding of SECB is connected by capacitor instead of voltage source, and SECB's braking force is generated by L-C resonance. SECB has wide range of driving and nonlinear inductance as well. Therefore, it is important to select capacitance based on the value of inductance. This paper discusses about the process of deciding capacitance and the change of resonance frequency based on the inductance change in each speed. Also the braking force was confirmed by the experimental model of SECB.

Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux - (반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 -)

  • Kim Ha-Yong;Kim Seung-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.