• Title/Summary/Keyword: wind-tunnel test

Search Result 853, Processing Time 0.024 seconds

Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade (풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성)

  • Woo, Young-Jin;Kang, Deok-Hun;Lee, Jang-Ho
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

Wind tunnel blockage effects on aerodynamic behavior of bluff body

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.351-364
    • /
    • 1998
  • In wind tunnel experiments, the blockage effect is a very important factor which affects the test results significantly. A number of investigations into this problem, especially on the blockage correction of drag coefficient, have been carried out in the past. However, only a limited number of works have been reported on the wind tunnel blockage effect on wind-induced vibration although it is considered to be fairly important. This paper discusses the aerodynamic characteristics of the square model and square model with corner cut based on a series of the wind tunnel tests with various blockage ratios and angles of attack. From the test results, the aerodynamic behavior of square models with up to 10% blockage ratio are almost the same and square models with up to 10% blockage ratio can be tested as a group which behaves similarly.

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.

Transiting test method for galloping of iced conductor using wind generated by a moving vehicle

  • Guo, Pan;Wang, Dongwei;Li, Shengli;Liu, Lulu;Wang, Xidong
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.155-170
    • /
    • 2019
  • This paper presents a novel test method for the galloping of iced conductor using wind generated by a moving vehicle which can produce relative wind field. The theoretical formula of transiting test is developed based on theoretical derivation and field test. The test devices of transiting test method for aerodynamic coefficient and galloping of an iced conductor are designed and assembled, respectively. The test method is then used to measure the aerodynamic coefficient and galloping of iced conductor which has been performed in the relevant literatures. Experimental results reveal that the theoretical formula of transiting test method for aerodynamic coefficient of iced conductor is accurate. Moreover, the driving wind speed measured by Pitot tube pressure sensors, as well as the lift and drag forces measured by dynamometer in the transiting test are stable and accurate. Vehicle vibration slightly influences the aerodynamic coefficients of the transiting test during driving in ideal conditions. Results of transiting test show that the tendencies of the aerodynamic coefficient curve are generally consistent with those of the wind tunnel tests in related studies. Meanwhile, the galloping is fairly consistent with that obtained through the wind tunnel test in the related literature. These studies validate the feasibility and effectiveness of the transiting test method. The present study on the transiting test method provides a novel testing method for research on the wind-resistance of iced conductor.

Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel (한양대학교 중형 아음속 풍동의 공력특성에 관한 연구)

  • Go, Gwang Cheol;Jeong, Hyeon Seong;Kim, Dong Hwa;Jo, Jin Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.92-98
    • /
    • 2003
  • The optimum design of Hanyang low speed wind tunnel has been performed to augment flow uniformity and to reduce turbulence intensity of wind tunnel test section have to be known for reliability of wind tunnel test. The non-uniformity and turbulence intensity of Hanyang low speed wind tunnel were measured with Pilot tube and X-type hot-wire probe at various wind speeds. As the results, the non-uniformity decreases as the wind speed increases. The non-uniformity is relatively high in the proximity of the diffuser. The turbulence intensity is a little higher than design requirement in the middle of the test section.

Wind Tunnel Test of Aerodynamic Forces and Wind Pressures Acting on Muilti-layer Radom in Active Phased Array Radar (풍동실험을 통한 능동위상배열레이더에서 다층레이돔에 작용하는 공기력과 풍압의 실험적 연구)

  • Yim, Sung-Hwan;Kang, Kwang-Hee;Choi, Ji-Ho;Lee, Seung-Ho;Kwon, Soon-Duck
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.149-157
    • /
    • 2014
  • In this paper, we investigated the sensitivity of aerostatic force coefficients of multi-layer radom in the various wind speeds. The test was conducted in KOCED Wind Tunnel Center in Chonbuk National University, and wind speeds were in the range from 5 m/s to 26 m/s in order to determine the Reynolds number independence. The test results of present multi-layer radom were not affected by the Reynolds number, The maximum positive pressure coefficient was found to be 1.08 at the center of the front of the plane in angle of attack of 0 degree, the maximum negative pressure coefficient was -2.03 at the upper right corner in angle of attack of 120 degree, while maximum drag coefficient was 1.11 in angle of attack of 180 degree.

Concept Design of a H.A.U.'s Subsonic Wind Tunnel (H대학교 아음속 풍동 개념설계)

  • Chang, J.W.;Jeon, C.S.;Kim, M.S.;Lee, Y.;Moon, H.J.;Song, B.H.;Kim, H.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.4
    • /
    • pp.92-99
    • /
    • 2005
  • A closed-circuit type wind tunnel is designed, which has a test section with the dimensions $1.2(W){\times}1.2(H){\times}3.4(L)$. A subsonic wind tunnel is designed to improves educational circumstances and promote ground tests. It is constituted of an exchangeable test section, first and second diffusers, a fan, a settling chamber, a contraction, and 4 corners. The maximum velocity in the test section is 70m/s and the contraction ratio is 6.25:1. Input power in the wind tunnel is about 96.1 kw (128.8 hp) and its energy ratio is 3.89. It has the dimension of about $7.4(W){\times}3.6(H){\times}21.7m(L)$. The wind tunnel designed in this investigation will be an effective educational and investigational equipment.

  • PDF

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

Design and Ground Test of Gust Generator for GLA Wind Tunnel Test (돌풍하중완화 풍동시험을 위한 돌풍발생장치 설계 및 지상시험)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.45-48
    • /
    • 2005
  • Tile gust generator was designed for generating the gust field in the wind tunnel test of the scaled flexible wing model for validating gust response alleviation system. The ground operation test was performed for estimating the dynamic performance of tile gust generator before installing it in the wind tunnel for gust field measurement. The ground test results showed that the gust generator has sufficient dynamic capability to simulate the sinusoidal and random motion of the gust generator wing and thus can be used in the wind tunnel test related to gust.

  • PDF