• 제목/요약/키워드: wind-speed parameters

검색결과 316건 처리시간 0.024초

일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법 (Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed)

  • 김수옥
    • 한국농림기상학회지
    • /
    • 제19권3호
    • /
    • pp.130-139
    • /
    • 2017
  • 기상청 동네예보 풍속으로부터 농작물의 강풍피해를 예측하기 위해, 방재기상관측지점 19곳의 2012년 풍속자료를 이용하여 기상청 동네예보의 3시간 간격과 동일한 0000, 0300 ${\cdots}$ 2100 시간대의 풍속과 직전 3시간 동안의 최대풍속 간의 관계를 직선회귀식으로 표현하였다. 매 3시간 마다 추정된 최대풍속 중 가장 큰 값을 일 최대풍속으로 간주하고, 이 때의 추정오차를 정규분포와 Weibull 분포 확률밀도함수로 표현하였다. 또한 일 최대풍속과 작물 피해 임계풍속 간의 편차를 추정오차 기반 확률 분포에 적용하여 확률누적값으로 풍해 '주의보'와 '경보' 단계를 설정하였다. 19지점별 최대풍속 추정 회귀계수(a, b)와 추정오차의 표준편차 및 Weibull 분포의 모수(${\alpha}$, ${\beta}$)는 공간내삽하여 분포도로 작성하고 종관기상관측지점 4곳(순천, 남원, 임실, 장수)의 격자값을 추출하였다. 이를 이용해 2012년의 일 최대풍속을 추정하고, 배 만삼길 품종의 낙과 발생 사례에서 제시된 풍속 10m/s를 낙과 임계풍속으로 간주, 풍해 주의보와 경보를 판정하였다. 그 결과, 최대풍속 추정오차를 Weibull 분포로 표현하여 풍해 위험 정도를 판정하는 것이 정규분포만을 이용하는 것보다 더 현장에 정확한 주의보를 발령할 수 있었다.

Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons

  • Ye, X.W.;Xi, P.S.;Su, Y.H.;Chen, B.
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.809-824
    • /
    • 2017
  • The accurate evaluation of wind characteristics and wind-induced structural responses during a typhoon is of significant importance for bridge design and safety assessment. This paper presents an expectation maximization (EM) algorithm-based angular-linear approach for probabilistic modeling of field-measured wind characteristics. The proposed method has been applied to model the wind speed and direction data during typhoons recorded by the structural health monitoring (SHM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. In the summer of 2015, three typhoons, i.e., Typhoon Chan-hom, Typhoon Soudelor and Typhoon Goni, made landfall in the east of China and then struck the Jiubao Bridge. By analyzing the wind monitoring data such as the wind speed and direction measured by three anemometers during typhoons, the wind characteristics during typhoons are derived, including the average wind speed and direction, turbulence intensity, gust factor, turbulence integral scale, and power spectral density (PSD). An EM algorithm-based angular-linear modeling approach is proposed for modeling the joint distribution of the wind speed and direction. For the marginal distribution of the wind speed, the finite mixture of two-parameter Weibull distribution is employed, and the finite mixture of von Mises distribution is used to represent the wind direction. The parameters of each distribution model are estimated by use of the EM algorithm, and the optimal model is determined by the values of $R^2$ statistic and the Akaike's information criterion (AIC). The results indicate that the stochastic properties of the wind field around the bridge site during typhoons are effectively characterized by the proposed EM algorithm-based angular-linear modeling approach. The formulated joint distribution of the wind speed and direction can serve as a solid foundation for the purpose of accurately evaluating the typhoon-induced fatigue damage of long-span bridges.

Rain-wind induced vibration of inclined stay cables -Part I: Experimental investigation and physical explanation

  • Cosentino, Nicola;Flamand, Olivier;Ceccoli, Claudio
    • Wind and Structures
    • /
    • 제6권6호
    • /
    • pp.471-484
    • /
    • 2003
  • The rain-wind induced vibration of stays is a phenomenon discovered recently and not well explained yet. As it is influenced by a wide range of physical parameters (cable size and shape, wind speed, direction and turbulence, rain intensity, material repellency and roughness, cable weight, damping and pre-strain), this peculiar phenomenon is difficult to reproduce in laboratory controlled conditions. A successful wind tunnel experimental campaign, in which some basic physical quantities were measured, allowed an extensive analysis as to identify the parameters of the rain-wind induced excitation. The unsteady pressure field and water thickness around a cable model were measured under rainy-excited conditions. The knowledge of those parameters provided helpful information about the air-flow around the cable and allowed to clarify the physical phenomenon which produces the excitation.

시뮬레이터를 이용한 가변속 풍력발전기 제어시스템 검증 (Verification of The Variable-Speed Wind Turbine Control System by Using the Simulator)

  • 차삼곤;한상열;차종환;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2007
  • For the development of wind turbine, generally simulator is used. Simulator include wind turbine components. e.g blades, pitch and pitching method, rotor, yaw system, tower, drive train and so on. Few the more, it include a external circumstance. e.g wind speed, wind direction, air density. these basic parameters be used for the control of wind turbine by wind turbine controller in wind turbine simulator. The wind turbine controller can be designed in the wind turbine simulator. But a developer must make the real control system that will be made using PLC or PC or other processor. The developer must verify the function of control system. that is control algorithm , I/O function, communication, sequence and so on. This verification is possible if we substitute the real wind turbine control system for wind turbine controller in the simulator.

  • PDF

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Impacts of Wind Power Integration on Generation Dispatch in Power Systems

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.453-463
    • /
    • 2013
  • The probabilistic nature of renewable energy, especially wind energy, increases the needs for new forms of planning and operating with electrical power. This paper presents a novel approach for determining the short-term generation schedule for optimal operations of wind energy-integrated power systems. The proposed probabilistic security-constrained optimal power flow (P-SCOPF) considers dispatch, network, and security constraints in pre- and post-contingency states. The method considers two sources of uncertainty: power demand and wind speed. The power demand is assumed to follow a normal distribution, while the correlated wind speed is modeled by the Weibull distribution. A Monte Carlo simulation is used to choose input variables of power demand and wind speed from their probability distribution functions. Then, P-SCOPF can be applied to the input variables. This approach was tested on a modified IEEE 30-bus system with two wind farms. The results show that the proposed approach provides information on power system economics, security, and environmental parameters to enable better decision-making by system operators.

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

A Reliability Evaluation Model for the Power Devices Used in Power Converter Systems Considering the Effect of the Different Time Scales of the Wind Speed Profile

  • Ji, Haiting;Li, Hui;Li, Yang;Yang, Li;Lei, Guoping;Xiao, Hongwei;Zhao, Jie;Shi, Lefeng
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.685-694
    • /
    • 2016
  • This paper presents a reliability assessment model for the power semiconductors used in wind turbine power converters. In this study, the thermal loadings at different timescales of wind speed are considered. First, in order to address the influence of long-term thermal cycling caused by variations in wind speed, the power converter operation state is partitioned into different phases in terms of average wind speed and wind turbulence. Therefore, the contributions can be considered separately. Then, in regards to the reliability assessment caused by short-term thermal cycling, the wind profile is converted to a wind speed distribution, and the contribution of different wind speeds to the final failure rate is accumulated. Finally, the reliability of an actual power converter semiconductor for a 2.5 MW wind turbine is assessed, and the failure rates induced by different timescale thermal behavior patterns are compared. The effects of various parameters such as cut-in, rated, cut-out wind speed on the failure rate of power devices are also analyzed based on the proposed model.

Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures

  • Lin, Li;Ang, A.H.S.;Xia, Dan-dan;Hu, Hai-tao;Wang, Huai-feng;He, Fu-qiang
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.837-846
    • /
    • 2017
  • An accurate calculation of the stochastic wind field is the foundation for analyzing wind-induced structure response and reliability. In this research, the spatial correlation of structural wind field was considered based on the time domain method. A method for calculating the stochastic wind field based on cross stochastic Fourier spectrum was proposed. A flowchart of the proposed methodology is also presented in this study to represent the algorithm and workflow. Along with the analysis of regional wind speed distribution, the wind speed time history sample was calculated, and the efficiency can therefore be verified. Results show that the proposed method and programs could provide an efficient simulation for the wind-induced structure response analysis, and help determine the related parameters easily.

풍력 발전기 피치 제어를 위한 퍼지 PI 제어기 (A Fuzzy PI Controller for Pitch Control of Wind Turbine)

  • 천종민;김진욱;김홍주;최영규;김무림
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권1호
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.