• Title/Summary/Keyword: wind-loading

Search Result 432, Processing Time 0.026 seconds

Wind load characteristics of large billboard structures with two-plate and three-plate configurations

  • Wang, Dahai;Chen, Xinzhong;Li, Jie;Cheng, Hao
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.703-721
    • /
    • 2016
  • This paper presents a wind tunnel study of wind loads of the large billboard structures with two-plate and three-plate configurations. Synchronous dynamic pressures on the surfaces of plates are measured, and the characteristics of local pressures, integrated forces on each individual plate and on the overall structures are investigated. The influences of wind direction and plate configuration on wind load characteristics, and the contributions of overall crosswind load and torque to the stress responses are examined. The results showed that the wind load characteristics of windward plate in both two- and three-plate configurations are very similar. The contribution of overall crosswind load makes the total resultant force from both alongwind and crosswind loads less sensitive to wind direction in the case of three-plate configuration. The overall torque is lower than the value specified in current codes and standards, and its contribution is less significant in both two-plate and three-plate configurations.

New GPU computing algorithm for wind load uncertainty analysis on high-rise systems

  • Wei, Cui;Luca, Caracoglia
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-487
    • /
    • 2015
  • In recent years, the Graphics Processing Unit (GPU) has become a competitive computing technology in comparison with the standard Central Processing Unit (CPU) technology due to reduced unit cost, energy and computing time. This paper describes the derivation and implementation of GPU-based algorithms for the analysis of wind loading uncertainty on high-rise systems, in line with the research field of probability-based wind engineering. The study begins by presenting an application of the GPU technology to basic linear algebra problems to demonstrate advantages and limitations. Subsequently, Monte-Carlo integration and synthetic generation of wind turbulence are examined. Finally, the GPU architecture is used for the dynamic analysis of three high-rise structural systems under uncertain wind loads. In the first example the fragility analysis of a single degree-of-freedom structure is illustrated. Since fragility analysis employs sampling-based Monte Carlo simulation, it is feasible to distribute the evaluation of different random parameters among different GPU threads and to compute the results in parallel. In the second case the fragility analysis is carried out on a continuum structure, i.e., a tall building, in which double integration is required to evaluate the generalized turbulent wind load and the dynamic response in the frequency domain. The third example examines the computation of the generalized coupled wind load and response on a tall building in both along-wind and cross-wind directions. It is concluded that the GPU can perform computational tasks on average 10 times faster than the CPU.

On the fatigue behavior of support structures for offshore wind turbines

  • Alati, N.;Nava, V.;Failla, G.;Arena, F.;Santini, A.
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.117-134
    • /
    • 2014
  • It is believed that offshore wind farms may satisfy an increasing portion of the energy demand in the next years. This paper presents a comparative study of the fatigue performances of tripod and jacket steel support structures for offshore wind turbines in waters of intermediate depth (20-50 m). A reference site at a water depth of 45 m in the North Atlantic Ocean is considered. The tripod and jacket support structures are conceived according to typical current design. The fatigue behavior is assessed in the time domain under combined stochastic wind and wave loading and the results are compared in terms of a lifetime damage equivalent load.

Structural Integrity through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade (공력해석 및 구조시험을 통한 소형 복합재 블레이드의 구조 안전성 평가)

  • Jang, Yun-Jung;Jeong, Jin-Hwan;Lee, Jang-Ho;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2012
  • This paper deals with the aerodynamic analysis and structural test under estimated loading condition for small composite blade, which is utilized in dual rotor wind turbine system. Firstly, the front and rear blades of dual rotor wind turbine system were modeled using reverse engineering method. And using finite volume method, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the pressure distribution on blades. And then, the full scale structural tests were conducted according to load and strength based methodology in IEC 61400-2 to identify the structural integrity of composite blade.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Optimum bracing design under wind load by using topology optimization

  • Kutuk, M. Akif;Gov, Ibrahim
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.497-510
    • /
    • 2014
  • Seismic and wind load performances of buildings are commonly improved by using bracing systems. In practice, standard bracing systems, such as X, Y, V, and K types are used. To determine the appropriate bracing type, the designer uses trial & error method among the standard bracings to obtain better results. However, using topology optimization yields more efficient bracing systems or new bracing can be developed depending on building and loading types. Determination of optimum bracing type for minimum deformation on a building under the effect of wind load is given in this study. A new bracing system is developed by using topology optimization. Element removal method is used to determine and remove the comparatively inefficient materials. Optimized bracing is compared with proposed bracing types available in the related literature. Maximum deformation value of building is used as performance indicator to compare effectiveness of different bracings to resist wind loads. The proposed bracing, yielded 99%, deformation reduction compared to the unbraced building.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

Climate change and design wind load concepts

  • Kasperski, Michael
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.145-160
    • /
    • 1998
  • In recent years, the effects of a possible climate change have been discussed in regard to wind loading on buildings and structures. Simple scenarios based on the assumption of global warming suggest an increase of storm intensities and storm frequencies and a possible re-distribution of storm tracks. Among recent publications, some papers seem to verify these scenarios while others deny the influence of climatic change. In an introductory step, the paper tries to re-examine these statements. Based on meteorological observations of a weather station in Germany, the existence of long-term trends and their statistical significance is investigated. The analysis itself is based on a refined model for the wind climate introducing a number of new basic variables. Thus, the numerical values of the design wind loads used in modern codes become more justified from the probabilistic point of view.

Wind loads on industrial solar panel arrays and supporting roof structure

  • Wood, Graeme S.;Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.481-494
    • /
    • 2001
  • Wind tunnel pressure tests were conducted on a 1:100 scale model of a large industrial building with solar panels mounted parallel to the flat roof. The model form was chosen to have the same aspect ratio as the Texas Tech University test building. Pressures were simultaneously measured on the roof, and on the topside and underside of the solar panel, the latter two combining to produce a nett panel pressure. For the configurations tested, varying both the lateral spacing between the panels and the height of the panels above the roof surface had little influence on the measured pressures, except at the leading edge. The orientation of the panels with respect to the wind flow and the proximity of the panels to the leading edge had a greater effect on the measured pressure distributions. The pressure coefficients are compared against the results for the roof with no panels attached. The model results with no panels attached agreed well with full-scale results from the Texas Tech test building.

Applications of Solid Viscoelastic Coupling Dampers (VCDs) in Wind and Earthquake Sensitive Tall Buildings

  • Montgomery, Michael;Ardila, Luis;Christopoulos, Constantin
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • Solid Viscoelastic Coupling Dampers (VCDs) provide distributed damping that improves the dynamic performance of tall buildings for both wind-storms and earthquakes for all amplitudes of vibration. They are configured in place of typical structural members in tall buildings and therefore do not occupy any architectural space. This paper summarizes the research and development at the University of Toronto in collaboration with Nippon Steel Engineering, 3M and Kinetica over the past two decades. In addition, impact studies on buildings incorporating the VCDs are presented, consisting of a wind sensitive 66-story building in Toronto, a dual-wind and seismic performance-based design of a 4-tower development in Manila and finally a 630 meter Megatall building in Southeast Asia in a severe seismic environment. In all applications the VCDs are shown to provide significant benefits in the dynamic performance under both wind and earthquake loading in a cost-effective manner.