• 제목/요약/키워드: wind-induced motion

검색결과 116건 처리시간 0.028초

Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

  • Li, Haoran;Hu, Zhiqiang;Wang, Jin;Meng, Xiangyin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.9-20
    • /
    • 2018
  • Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT) has to bear six Degrees of Freedom (DOF) motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

멀미의 병인(病因)에 대한 한의학적(韓醫學的) 접근(接近) (The Cause of Motion Sickness in Oriental Medicine)

  • 한윤정;장규태
    • 대한한방소아과학회지
    • /
    • 제22권1호
    • /
    • pp.149-162
    • /
    • 2008
  • Objectives The purpose of this study is to investigate that causes of motion sickness in oriental medicine. Methods The internal and external studies about motion sickness were searched Results and Conclusions The motion sickness is induced by conflict of balance system including vestibular, visual and proprioceptive system. The motion sickness is more common in female and in children between 2 and 12 years old. In western medicine, antihistamine and anticholinergic has been used for treatment of motion sickness, but these anti-motion sickness drug turn out to be not a perfect solution and have several side effects. On the other hands, In oriental medical terminology, there is no words equivalent to the "motion sickness", but we consider the motion sickness as state with dizziness, nausea and vomiting. The motion sickness can be induced by either internal or external causes and the internal causes can thought to be a constitutional factor of an individuals, and the general transportation can be an external cause. The important internal cause is a dysfunction of the spleen, stomch(脾胃不調), retention of phlegm and fluids(痰飮), and deficiency of the kidney jing(腎精不足). The wind(風) and fire(火) in the upper part of the body, especially in the head, also can be an important cause of the motion sickness.

  • PDF

Sloshing characteristics of an annular cylindrical tuned liquid damper for spar-type floating offshore wind turbine

  • Jeon, S.H.;Seo, M.W.;Cho, Y.U.;Park, W.G.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.331-343
    • /
    • 2013
  • The natural sloshing frequencies of annular cylindrical TLD are parametrically investigated by experiment, aiming at the exploration of its successful use for suppressing the structural vibration of spar-type floating wind turbine subject to multidirectional wind, wave and current excitations. Five prototypes of annular cylindrical TLD are defined according to the inner and outer radii of acryl container, and eight different liquid fill heights are experimented for each TLD prototype. The apparent masses near the first and second natural sloshing frequencies are parametrically investigated by measuring the apparent mass of interior liquid sloshing to the acceleration excitation. It is observed from the parametric experiments that the first natural sloshing frequency shows the remarkable change with respect to the liquid fill height for each TLD model with different container dimensions. On the other hand, the second natural sloshing frequency is not sensitive to the liquid fill height but to the gap size, for all the TLD models, convincing that the annular cylindrical sloshing damper can effectively suppress the wave- and wind-induced tilting motion of the spar-type floating wind turbine.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

연안복합지형에서 바람폭풍의 진화 (Evolution of Wind Storm over Coastal Complex Terrain)

  • 최효;서장원;남재철
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究) (Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings)

  • 김동우;길용식;하영철
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.499-509
    • /
    • 2005
  • 강풍으로 유발되는 고층건축물의 풍진동은 주로 와류에 의한 풍직각방향의 진동에 의하여 발생한다. 이러한 진동은 단면형상이 일정한 유연하고, 경량이며, 경감쇠인 고층건축물인 경우 가장 심하게 발생한다. 본 논문은 와류에 기인한 풍직각방향의 진동을 저감시키기 위한 공역학적인 방법을 논한 것이다. 항력 및 횡력방향의 압력을 균등화하고 또한 양방향의 공간적인 간섭을 분산시키고, 풍직각 방향으로 작용하는 풍력의 크기를 효율적으로 감소시키기 위하여 건축물의 풍방향 및 풍직각방향에 중공부를 설치하였다. 실험모형은 모두 형상비가 8:1이 되도록 하였고, 중공부의 형상은 2종류, 크기는 2종류, 위치는 6종류로 변화시킨 총 24종류의 모형을 제작하여 풍력실험을 실시한 후 각 모형에 대한 풍방향 및 풍직각방향의 변위응답특성을 조사하였다. 최종적으로 중공부를 가진 모형의 효율성을 분석하기 위하여 중공부를 가진 모형에 대한 결과를 중공부가 없는 정사각형 각주의 변위응답 특성과 비교 분석하여 중공부의 형상 변화, 크기 변화, 위치 변화에 따른 풍진동의 저감효과의 정도를 정량적으로 규명하였다.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.