• 제목/요약/키워드: wind-driven ventilation

검색결과 9건 처리시간 0.024초

풍동실험을 통한 공동주택 지하주차장의 자연환기 성능 연구 (Experimental Study on Wind-driven Ventilation in Basement Parking Lots of Apartment)

  • 이시웅;노지웅
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.103-107
    • /
    • 2004
  • This paper aims for evaluating the wind-driven ventilation in basement parking lots of apartment. Wind tunnel tests coupled with tracer gas method were conducted, and classified by wind directions and opening types. The test results showed that, as for wind-driven ventilations, stack type openings were more successful than scuttle vent. Finally, according to Weibull distribution in Seoul, yearly averaged wind-driven ventilation rate was calculated.

공동주택 지하주차장의 풍력환기 성능에 관한 연구 - 환기구 면적 및 주변건물의 영향 - (A Study on Ventilation Performance driven by Wind Force in Underground Parking Lots of Apartment - Influence of Opening Size and Surrounding Building -)

  • 노지웅
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.29-34
    • /
    • 2012
  • As a series of studies about natural ventilation driven by wind in basement parking lots of apartment, the influence of opening size and surrounding buildings on ventilation rate was analyzed. Natural ventilation in underground parking lots almost rely on wind than temperature difference. To investigate natural ventilation driven by wind, wind tunnel tests by using scale model and tracer gas method were conducted. $CO_2$-gas concentration was measured, natural ventilation rates were calculated. The experimental results showed that the natural ventilation rate is more reliable to wind direction and surrounding building than opening size and distance between buildings. It was verified that surrounding buildings play a principal role in increasing air flow rate by accelerating wind speed, and growing turbulence intensity. And it showed that ventilation performance is able to be increased by oblique wind to entrance ramp than head on wind in underground parking lots with surrounding buildings.

풍력환기에 의한 아트리움의 열환경 개선에 관한 연구 (Study on Improvement of Thermal Environment by using Wind-driven Natural Ventilation on the Atrium)

  • 노지웅
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.40-47
    • /
    • 2012
  • According to the advancement of computer and simulation method, it becomes possible to predict indoor climate precisely by using CFD simulation coupled with heat conduction, convection, and radiation. However, predicting the indoor climate is generally conducted by using a simplified CFD coupled simulation method since it takes quite long time to use a general CFD simulation method. In this study, a simplified CFD coupled simulation was conducted in order to find out the effect of natural ventilation by wind-driven in atrium. As a result of calculation, it was clarified that the natural ventilation driven by temperature difference was not enough to remove the accumulated heat of upper zone and the natural ventilation by wind-driven was needed. Finally, it is required to decide the window direction and size based on correct indoor climate prediction method for the effective use of natural ventilation by wind-driven.

공동주택 지하주차장의 개구유형에 따른 풍력환기 성능에 관한 연구 - 풍동실험에 의한 풍압계수 검토 - (A Study on Wind-Driven Ventilation Performance According to Opening Types in Basement Parking Lots of Apartment - Investigation of Wind Pressure Coefficient by Wind Tunnel Test -)

  • 노지웅
    • KIEAE Journal
    • /
    • 제11권6호
    • /
    • pp.37-42
    • /
    • 2011
  • This Paper aims for analyzing the effect of opening types on wind-driven ventilation performance in basement parking lots of apartment. The scale model of basement parking lot was made, wind tunnel tests conducted. Wind pressure of three opening types was measured, wind pressure coefficient calculated. As the result, it showed that the air flow pattern of stack type opening was strongly changed by wind direction, but it was almost not at scuttle vent type. But, as for the difference of wind pressure coefficient, stack type opening was more than the other two types.

자연환기와 복사냉방을 병용한 하이브리드 시스템의 제안 (A Proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation)

  • 송두삼
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.543-550
    • /
    • 2003
  • In order to saving the energy for HVAC system of buildings, utilization of wind-induced cross ventilation is thought to be promising. However, utilization of natural ventilation alone is not sufficient for maintaining the human thermal-comfort such as in hot and humid regions. A hybrid air conditioning system with a controlled natural ventilation system, or combination of natural ventilation with mechanical air conditioning is thought to overcome the deficiency of wind-driven cross ventilation and to have significant effects on energy reduction. This paper describes a concept of hybrid system and propose a new type of hybrid system using radiational cooling with wind-induced cross ventilation. Moreover, a radiational cooling system is compared with an all-air cooling system. The characteristics of the indoor environment will be examined through CFD (Computational Fluid Dynamics) simulation, which is coupled with a radiation heat transfer simulation and with HVAC control in which the PMV value for the human model in the center of the room is controlled to attain the target value.

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

연안지역 아파트의 전력소비량 실태조사 - 부산광역시 영도구에 대한 사례연구 - (A Survey on the Electric Power Consumptions of Apartments located at Coastal Area : Yeongdo-gu, Busan, Korea)

  • 황광일
    • 한국항해항만학회지
    • /
    • 제33권3호
    • /
    • pp.241-245
    • /
    • 2009
  • 도심지의 열섬(Heat Island)현상과 연안지역의 해풍(海風)의 영향 때문에, 부산, 인천, 목포 등 연안도시의 도심지역과 연안지역의 각 외기 상태가 서로 다르게 나타난다. 이러한 외기조건은 건물의 냉방부하, 난방부하, 전력소비량 등에 직접적인 영향을 미치기 때문에, 에너지절약을 위한 건물설계와 운전방법개발을 위해서는 각 지역에 위치한 건물의 에너지소비특성을 파악해야만 한다. 본 연구에서는 연안지역 아파트의 전력소비량에 주목하였고, 부산광역시 영도구에 위치한 세대수가 100세대 이상인 22개 아파트 단지를 대상으로 기간별, 기능별 전력소비량을 조사하였다. 22개 아파트 전체의 세대내 최대전력소비량은 8월에 발생하고 있으나, 공용 최대전력소비량은 1월에 발생하고 있음을 알수 있었다. 한편 연안지역에서는 여름철에 해풍에 의한 자연환기로 인해 냉방용 전력소비가 감소할 것으로 예상하였으나, 조사결과에서는 여름철에 최대부하가 발생하였는데, 이는 해풍에 포함된 염분의 피해를 예방하기 위해 창문을 닫고 전기구동 에어컨으로 냉방하기 때문인 것으로 파악되었다.

Developing a BIM-Based Methodology Framework for Sustainability Analysis of Low Carbon High-Rise Buildings

  • Gan, Vincent J.L.;Li, Nan;Tse, K.T.;Chan, C.M.;Lo, Irene M.C.;Cheng, Jack C.P.
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.14-23
    • /
    • 2017
  • In high-density high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, to achieve lower carbon emissions in the city. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). An integrated analysis of both types of carbon emissions can strengthen the design of low carbon buildings, but most of the previous studies concentrated mainly on either embodied or operational carbon. Therefore, the primary objective of this study is to develop a holistic methodology framework considering both embodied and operational carbon, in order to enhance the sustainable design of low carbon high-rise buildings. The framework will be based on the building information modeling (BIM) technology because BIM can be integrated with simulation systems and digital models of different disciplines, thereby enabling a holistic design and assessment of low carbon buildings. Structural analysis program is first coupled with BIM to validate the structural performance of a building design. The amounts of construction materials and embodied carbon are then quantified by a BIM-based program using the Dynamo programming interface. Operational carbon is quantified by energy simulation software based on the green building extensible Markup Language (gbXML) file from BIM. Computational fluid dynamics (CFD) will be applied to analyze the ambient wind effect on indoor temperature and operational carbon. The BIM-based framework serves as a decision support tool to compare and explore more environmentally-sustainable design options to help reduce the carbon emissions in buildings.

  • PDF