• 제목/요약/키워드: wind wave

검색결과 855건 처리시간 0.025초

부유식 풍력발전 해석 프로그램 WindHydro 특성 연구 (A Study on the Characteristics of WindHydro - a Floating Wind Turbine Simulation Code)

  • 송진섭;임채환;이성균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.37.1-37.1
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, 'WindHydro', is newly developed. In order to investigate the characteristics of the program, a series of loading cases are simulated such as (1) wind only case, (2) free decay cases with initial displacement, (3) wave only case (4) wind and wave case. The simulations are carried out for the 5-MW OC3-Hywind model which has a spar buoy and catenary mooring lines. As a result, the reliability of WindHydro is verified in most viewpoints although additional study is still necessary to clear out some uncertainty of the program.

  • PDF

해상풍력터빈에 대한 하중 모사 방법 연구 (Load simulation for offshore wind turbine)

  • 석상민;이성건;정진화;박현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • In this paper, the purpose is a study on structural analysis for offshore wind turbine using commercial code. Because offshore wind turbine is subjected to great wind and wave force, it is necessary to analyse the dynamics and minimize the response of wind turbine. The offshore wind turbine tower is modelled as a single degree of freedom and multi degree of freedom structure. It is assumed that the blades, nacelle are composed of concentrated masses.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Numerical analysis of a hybrid substructure for offshore wind turbines

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun;Lee, Du-Ho;Kim, Byeong-Cheol
    • Ocean Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.169-183
    • /
    • 2014
  • For the reliable design of substructure supporting offshore wind turbines it is very important to reduce the effects of wave forces. Since the substructure is strongly influenced by the effects of wave forces as the size of substructure increases. In the present study, the hybrid substructure with multi-cylinder is newly suggested to reduce the effects of wave forces. Using diffraction theory the scattering waves in a fluid region are expressed by an Eigenfunction expansion method with three dimensional potential theory to calculate the wave force acting on the hybrid substructure. The wave force and wave run-up acting on the hybrid substructure is presented to examine the water wave interaction according to the variation of cylindrical size and the distance among cylinders. It is found that the suggested hybrid substructure with multi-cylinder is very useful to reduce the effects of wave forces acting on the substructure for offshore wind turbines.

Alfven Wave에 의한 31 Cyg의 Wind 속도 (THE WIND VELOCITIES DRIVEN BY ALFVEN WAVES IN 31 CYG)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.63-72
    • /
    • 1991
  • 31Cyg는 Aur형의 장주기 쌍성으로, 확장된 대기를 갖는 초거성과 뜨거운 주계열성으로 이루어져 있다. 초거성의 wind는 질량 손실률이 크고, 차갑고, 낮은 terminal velocity를 갖는데, 일반적으로 Alfven wave가 wind mechanism으로 받어들여지고 있다. 이 논문에서는 31 Cyg에 대해 Alfven wave에 의한 모델을 적용하여 운동방정식을 직접 적분하였는데, 그 terminal velocity가 50∼80km/s로 관측값과 잘 들어 맞았다. 그리고 그 결과를 Kuin과 Ahmad(1989)의 경험적인 모델과 비교하였다.

  • PDF

해상풍력 하부구조물 하중영향평가 및 해석기술연구 (A study on load evaluation and analysis for foundation of the offshore wind turbine system)

  • 권대용;박현철;정진화;김용천;이승민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • 제10권5호
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정 (Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models)

  • 김지민;김창훈;김도삼;허동수
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.57-65
    • /
    • 2007
  • 천해파랑을 산정하기 위하여 천수, 굴절, 회절, 반사 및 쇄파 등의 파랑변형요소를 고려하는 대부분의 수치모델은 천해역에서의 바람장을 수치모델과 결합하여 천해파랑을 산정하고 있다. 그리고, 일반적으로 천해역에서 바람장을 산정하는 경우에 태풍모델로부터 얻어진 바람장을 해상풍으로 변환하여 사용하고 있다. 그러나, 이러한 해상풍 산정법은 해상풍의 평가에 중요한 요소로 작용될 수 있는 육상지형의 영향에 대해서는 고려하고 있지 않다. 본 연구는 천해역에서의 해상풍 산정에 대하여 육상지형의 영향을 고려함으로써, 결과적으로 정도 높은 천해파랑산정을 목적으로 한다. 먼저 지역적으로 차폐 및 개방되어 있는 해역을 대상으로 태풍모델로부터 얻어진 해상풍과 본 연구에서 적용하는 육상지형의 영향을 고려할 수 있는 MASCON모델로 산정된 해상풍의 결과를 상호 비교 검토한다. 그리고, 각 모델로부터 얻어진 해상풍을 SWAN모델에 적용하여 천해파랑을 산정하며, 이의 결과를 상호 비교 검토한다. 검토된 결과로부터 정도 높은 천해파랑산정을 위한 MASCON모델의 필요성을 논의한다.

풍랑 모델링을 기반으로 한 실시간 파고 측정 시스템 (Wave Height Measurement System Based on Wind Wave Modeling)

  • 이중현;이동욱;허문범
    • 융합신호처리학회논문지
    • /
    • 제13권4호
    • /
    • pp.166-172
    • /
    • 2012
  • 일반적인 파고 측정 시스템은 스펙트럼 분석을 통하여 파고를 측정한다. 하지만 스펙트럼 분석은 fast fourier transform(FFT)을 이용하기 때문에 구조가 복잡하며, 또한 FFT를 사용하기 위해서는 먼저 데이터를 저장해야 하기 때문에 실시간 처리가 어렵다. 본 논문에서는 칼만필터와 관성센서를 사용하여 실시간으로 데이터를 처리하는 알고리즘을 개발하고 성능을 평가하였다. 칼만필터 이론은 비교적 복잡한 알고리즘이지만 FFT를 사용하는 것에 비하여 간단하며, 가속도 데이터를 적분하여 위치를 효율적으로 추정할 수 있다. 하지만 가속도 데이터를 적분할 때 오차의 누적이 발생되는데, 파고의 특징을 이용한 알고리즘을 개발하여 누적오차 문제를 해결하였다. 본 논문에서는 다양한 조건의 해파를 모델링하여 성능평가를 수행하였으며, 실험을 통하여 풍랑측정에 한해서 평균 오차율 3.5%로 우수한 측정 성능을 확인할 수 있었다.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.