• Title/Summary/Keyword: wind velocity/direction

Search Result 251, Processing Time 0.023 seconds

Influence of trailing edge serration in the wake characteristics of S809 airfoil

  • Mano Sekar;Amjad Ali Pasha;Nadaraja Pillai Subramania
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The wake behavior of extended flat plate and serration in the trailing edge of S809 airfoil is presented in this experimental study using wind tunnel testing. The clustering of wind turbines in wind parks has recently been a pressing issue, due to the expected increase in power output and deciding the number of wind turbines to be installed. One of the prominent factors which influence the performance of the subsequent wind turbines is the downstream wake characteristics. A series of wind tunnel investigations were performed to assess the downstream near wake characteristics of the S809 airfoil at various angles of attack corresponding to the Reynolds Number Re = 2.02 × 105. These experimental results revealed the complex nature of the downstream near wake characteristics featuring substantial asymmetry arising out of the incoherent flow separations prevailing over the suction and the pressure sides of the airfoil. Based on the experimental results, it is found that the wake width and the downstream velocity ratio decrease with an increase in the angle of attack. Nonetheless, the dissipation length and downstream velocity ratio increases proportionally in the downstream direction. Additionally, attempts were made to understand the physical nature of the near wake characteristics at 1C, 2C, 3C and 4C downstream locations.

Analysis of Air Current Measurements at External Induction-Style Kitchen and Bathroom Vents (외기유인형 주방·욕실 배기구의 기류측정 분석)

  • Lee, Yong-Ho;Kim, Seong-Yong;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.76-84
    • /
    • 2012
  • This study conducted experiments to measure air currents in an experimental building according to external conditions, types of induction ducts, and types of internal sockets by applying an external induction duct comprised of inducing openings and lines and induction units to the kitchen and bathroom vents at the rooftop of a super high-rise apartment building in order to help to improve the venting performance. The study also proposed the optimization of the external induction-style kitchen and bathroom vents capable of wind power generation. (1) As for air current distribution according to vent velocity changes, it increased the venting performance of the kitchen and bathroom by 1.0m/s at vent velocity of 2.0m/s or higher and allowed for wind power generation. (2)As for air current distribution according to external velocity changes, it increased the venting performance of the kitchen and bathroom by 1.2m/s at external velocity of 2.0m/s or higher and allowed for wind power generation. (3)As for air current distribution according to wind direction changes($0{\sim}180^{\circ}$), it was favorable for higher vent velocity when the angle between the external induction duct direction and prevailing wind direction was within ${\pm}30^{\circ}$. (4)As for air current distribution according to induction duct type, the[M1] type combining the inducing openings and lines with the induction units recorded the highest improvement effects in the kitchen and bathroom venting performance by increasing vent velocity by 46%. (5)As for air current distribution according to the changing types of internal sockets where the main ducts of the kitchen and bathroom are connected to the external induction ducts, the venturi tube type[Sv] increased vent velocity by 66% based on the smoothest external inflow.

Experiment of the Shelter Effect of Porous Wind Fences base on the Wind Tunnel Test (풍동실험을 이용한 다공성 방풍팬스의 방풍성능실험)

  • You, Jang-Youl;Jeon, Jong-Gil;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.91-101
    • /
    • 2006
  • We have conducted the study about the shelter effect against the wind by using the wind fence with various porosities and the measured distance from the wind fence, in three different types of it ; (Circle wind fence, Vertical wind fence, Horizontal wind fence) The shelter effect and turbulence characteristics of the selected wind barrier is throughly investigated by wind tunnel test. flow characteristics of velocities and turbulences behind wind fence were measured using hot-wire anemometer. we characterize the turbulence behind the wind fence by varying the porosity of 0 %, 20 %, 40%, and 60%, and the distances from the wind fence from 1 H to 9 H with maintaining the uniform flow velocity of 6 m/s. In addition, we investigated the overall characterization of the wind fence by measuring total of twenty eight points on the wind fence, which forms the lattice structure on it with seven points in lateral direction and four points in vertical direction. The results of analysis from the circle wind fence indicate that the degree of the turbulence is lowered and the velocity of the wind is decreased when the porosity of 40 % are used at the distance from 3 H to 9 H. On the other hand, the vertical, horizontal wind fence with the porosity of 20% is more advantageous at the distance of 2 H to 9 H. For the effectiveness of the wind fence depending on the position, the center part is the greatest and it decreases at the edges with 10 % to 30 % less than that of at the center.

  • PDF

Effect on the PM10 Concentration by Wind Velocity and Wind Direction (풍속과 풍향이 미세먼지농도에 미치는 영향)

  • Chae, Hee-Jeong
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.37-54
    • /
    • 2009
  • The study has analyzed impacts and intensity of weather that affect $PM_{10}$ concentration based on PM10 forecast conducted by the city of Seoul in order to identify ways to improve the accuracy of PM10 forecast. Variables that influence $PM_{10}$ concentration include not only velocity and direction of the wind and rainfalls, but also those including secondary particulate matter, which were identified to greatly influence the concentration in complicated manner as well. In addition, same variables were found to have different impacts depending on seasons and conditions of other variables. The study found out that improving accuracy of $PM_{10}$ concentration forecast face some limits as it is greatly influenced by the weather. As an estimation, this study assumed that basic research units and artificially estimated pollutant emissions, study on mechanisms of secondary particulate matter productions, observatory compliment, and enhanced forecaster's expertise are needed for better forecast.

Development of an Infiltration and Ventilation Model for Predicting Airflow Rates within Buildings (빌딩 내의 공기유동량 예측을 위한 누입 및 환기모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • A ventilation model was developed for predicting the air change per hour(ACH) in buildings and the airflow rates between zones of a multi-room building. In this model, the important parameters used in the calculation of airflow are wind velocity, wind direction, terrain effect, shielding effect by surrounding buildings, the effect of the window type and insect screening, etc. Also, the resulting set of mass balance equations required for the process of calculation of airflow rates are solved using a Conte-De Boor method. When this model was applied to the building which had been tested by Chandra et al.(1983), the comparison of predicted results by this study with measured results by Chandra et al. indicated that their variations were within -10%~+12%. Also, this model was applied to a building with five zones. As a result, when the wind velocity and direction did not change, terrain characteristics influenced the largest and window types influenced the least on building ventilation among terrain characteristics, local shieldings, and window types. Except for easterly and westerly winds, the ACH increased depending on wind velocity. The wind direction had influence on the airflow rates and directions through openings in building. Thus, this model can be available for predicting the airflow rates within buildings, and the results of this study can be useful for the quantification of airflow that is essential to the research of indoor air quality(temperature, humidity, or contaminant concentration) as well as to the design of building with high energy efficiency.

A Study on the Efficiency of Smoke Barriers in the Subway Station (지하역사 제연경계벽의 제연 효용성에 관한 연구)

  • Kim, Bum-Kyu;Kim, Hee-Young;Lee, Sung-Mi;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.204-208
    • /
    • 2008
  • Casualties Damage from Smoke is very serious consequence. Especially, Damage from smoke in in the Subway Station is the terrible result. Smoke from the fire in the Subway Station that evacuation route on the path and the sight of refugees caused by serious traffic problems. Accordingly, A study on Smoke barriers of smoke systems take into considerations relate to effects depending on wind velocity speed of the piston effect come into the retarding effect of smoke control in smoke barriers. As a result of modeling, According to increasing of Velocity in the platform which installed smoke barriers were been on the increase spreading quantity of smoke in the right direction of upstairs however, In contrast spreading quantity of smoke in the left direction on the upstairs were been on the decrease.

  • PDF

Measurement of Black Carbon Concentration and Comparison with PM10 and PM2.5 Concentrations monitored at the Chungcheong Province in Korea. (충청지역 블랙카본 농도 측정 및 PM10, PM2.5 농도와의 비교 분석 연구)

  • Cha, Youngbum;Lee, Shihyoung;Lee, Jeonghoon
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In order to characterize atmospheric aerosols in Chungcheong area, black carbon concentration, which is known to be closely related to global warming, was measured and compared with $PM_{10}$, $PM_{2.5}$ concentrations and various meteorological parameters such as wind velocity and wind direction. Multi Angle Absorption Photometer (MAAP), a filter-based equipment, was used for the black carbon measurement, and the $PM_{10}$, $PM_{2.5}$ concentrations, wind velocity and wind direction were provided by the local monitoring stations. Black carbon concentration was monitored to be high in spring and winter but low in fall. $PM_{10}$ concentration was observed to be high when westerly wind was strong.

Large-eddy simulation and wind tunnel study of flow over an up-hill slope in a complex terrain

  • Tsang, C.F.;Kwok, Kenny C.S.;Hitchcock, Peter A.;Hui, Desmond K.K.
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.219-237
    • /
    • 2009
  • This study examines the accuracy of large-eddy simulation (LES) to simulate the flow around a large irregular sloping complex terrain. Typically, real built up environments are surrounded by complex terrain geometries with many features. The complex terrain surrounding The Hong Kong University of Science and Technology campus was modelled and the flow over an uphill slope was simulated. The simulated results, including mean velocity profiles and turbulence intensities, were compared with the flow characteristics measured in a wind tunnel model test. Given the size of the domain and the corresponding constraints on the resolution of the simulation, the mean velocity components within the boundary layer flow, especially in the stream-wise direction were found to be reasonably well replicated by the LES. The turbulence intensity values were found to differ from the wind tunnel results in the building recirculation zones, mostly due to the constraints placed on spatial and temporal resolutions. Based on the validated mean velocity profile results, the flow-structure interactions around these buildings and the surrounding terrain were examined.

Numerical study of wind profiles over simplified water waves

  • Cao, Shuyang;Zhang, Enzhen;Sun, Liming;Cao, Jinxin
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.289-309
    • /
    • 2015
  • Vertical profiles of mean and fluctuating wind velocities over water waves were studied, by performing Large-Eddy Simulations (LES) on a fully developed turbulent boundary layer over simplified water waves. The water waves were simplified to two-dimensional, periodic and non-evolving. Different wave steepness defined by $a/{\lambda}$ (a : wave amplitude; ${\lambda}$ : wavelength) and wave age defined by $c/U_b$ (c: phase velocity of the wave; $U_b$ : bulk velocity of the air) were considered, in order to elaborate the characteristics of mean and fluctuating wind profiles. Results shows that, compared to a static wave, a moving wave plays a lesser aerodynamic role as roughness as it moves downstream slower or a little faster than air, and plays more aerodynamic roles when it moves downstream much faster than air or moves in the opposite direction to air. The changes of gradient height, power law index, roughness length and friction velocity with wave age and wave amplitude are presented, which shed light on the wind characteristics over real sea surfaces for wind engineering applications.

Monitoring of wind effects on an instrumented low-rise building during severe tropical storm

  • Li, Q.S.;Hu, S.Y.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.469-488
    • /
    • 2015
  • A full-scale instrumented low-rise building with gable roof was built at a coastal site with a high incidence of tropical cyclones for monitoring of wind effects on the building during windstorms. This paper presents the field measurements of the wind velocity field around and the wind-induced pressures on the low-rise building during the passage of severe tropical storm Soudelor. Near-ground wind characteristics such as wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and wind velocity spectra were investigated. The wind-induced pressures on the roof of the building were analyzed and discussed. The results revealed that the eave and ridge edges on the roof were subjected to the most severe suction pressures under quartering winds. These suction pressures showed obvious non-Gaussian behavior. The measured results were compared with the provisions of ASCE 7-10 to assess the suitability of the code of practice for the wind-resistant design of low-rise buildings under tropical cyclones. The field study aims to provide useful information that can enhance our understanding of the extreme wind effects on low-rise buildings in an effort to reduce tropical cyclone wind damages to residential buildings.