• Title/Summary/Keyword: wind turbine generator

Search Result 500, Processing Time 0.032 seconds

Development of auto-tuning algorithm for considering aging effect of wind turbine generator (풍력발전기의 경년화를 고려한 자동튜닝 알고리즘 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 2012
  • Recently, concern over climate change and global politics associated with traditional fossil fuel energy sources has driven significant increase in wind energy utilization over the past decade around world. Generally, life-time of wind turbine system should be guaranteed for twenty years. Therefore, performance deterioration of wind turbine system occurs owing to aging effects for long term operation. In this work, a new type of auto tuning algorithm for overcoming the problem of performance deterioration is proposed. Furthermore, various simulations are carried out to verify the feasibility of the proposed scheme.

Assessment of performance for Output Power Control of Wind Turbine using Energy Storage System (에너지저장장치를 이용한 풍력발전 출력 제어 성능 평가)

  • Hong, Jong-Seok;Choi, Chang-Ho;Lee, Joo-Yeon;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.254-259
    • /
    • 2014
  • In this paper, we describe construction of a wind stabilization demo-site and effects of output power control of wind turbines for suppression of ramp rate using ESS (Energy Storage System). It is difficult to control the output power of distributed generator such as wind turbine which of variation is very large. If the large capacity wind farm be interconnected into power system may cause blackout due to Power Quality. For these reasons, the international standards such as Grid-Code is limited to less than 10 [%/min] of renewable energy ramp rate. The case of Korea, government actively conducts propagating large-scale renewable energy for green growth policy, to interconnecting more renewable energy into power system is necessary for stabilization technology. For these reasons, the POSCO consortium has constructed a wind stabilization demo-site that is configured as 500 [kWh] battery energy storage systems can output up to 3 [C-Rate] and two wind turbines rated 750 [kW]. In POSCO consortium, which implements various methods stabilizing output power of wind turbine such as smoothing, section firming and ramp control, we derive the results of long-term demonstration that can be controlled to satisfy to the international standard about ramp rate [%/kW] of wind turbine output power.

Generator Control Method for Reactive Power Smoothing to increase Wind Power Penetration (풍력 수용 한계량 향상을 위한 발전기 무효전력 평활화 제어 기법)

  • Choi, Yun-Hyuk;Lee, Hwan-Ik;Lee, Byongjun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.197-198
    • /
    • 2015
  • As the global to increase the wind power penetration in the power system, grid-integration standards have been proposed for the stable integration of the large-scale wind farm. Particularly, the low voltage ride through function has been emphasized, as it relates to the voltage and reactive power control of the wind turbine and the rest generators. This paper proposes the non-wind power generator control method in order to improve the wind power penetration. To prove the effectiveness of the proposed strategy, the simulation study is implemented in the Jeju power system. It can improve the wind power penetration by the effective control of the control generators.

  • PDF

Modified Control Scheme to Regulate the Active Power Output of Doubly Fed Induction Generator (이중여자 권선형 유도발전기의 출력조정을 위한 제어 기법)

  • Park, Young-Ho;Won, Dong-Jun;Park, Jin-Woo;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1232-1233
    • /
    • 2007
  • As the number of wind turbines installed increase, the power from wind energy starts to replace conventional generation units and its influence on power system can not be neglected. Because of the intermittent nature of wind resource, the output power of wind turbine fluctuates according to wind speed variation. In this point of view, it is necessary for wind turbines to be equipped with power regulation ability. The doubly fed induction generator (DFIG) is one of the main techniques used in variable speed wind turbines. This thesis focuses on the development of modified control scheme of DFIG to regulate output power. The proposed control scheme achieves active power output regulation so as to stabilize the power system.

  • PDF

Design, analysis, and control of a variable electromotive-force generator with an adjustable overlap between the rotor and the stator

  • Zhu, W.D.;Goudarzi, N.;Wang, X.F.;Kendrick, P.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • A variable electromotive-force generator (VEG), which is a modified generator with an adjustable overlap between the rotor and the stator, is proposed to expand the operational range of a regular generator through a simple and robust active control strategy. It has a broad range of applications in hybrid vehicles, wind turbines, water turbines, and similar technologies. A mathematical model of the VEG is developed, and a novel prototype is designed and fabricated. The performance of the VEG with an active control system, which adjusts the overlap ratio based on the desired output power at different rotor speeds for a specific application, is theoretically and experimentally studied. The results show that reducing the overlap between the rotor and the stator of the generator results in reduced torque loss of the generator and an increased rotational speed of the generator rotor. A VEG can improve the fuel efficiency of hybrid vehicles; it can also expand operational ranges of wind turbines and water turbines and harness more power.

Comparison and Analysis for the Topology of Bladeless Wind Power Generator (블레이드리스 풍력발전기의 토폴로지에 관한 비교·분석)

  • Junhyuk Min;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • This study focuses on the modeling and analysis of the linear generator for a bladeless wind power generation to overcome the limitations and drawbacks of conventional wind turbines. A bladeless wind power generation system has the advantages of low land requirement for installation and maintenance cost compared to a blade wind power turbine. Nevertheless, question concerning the generator topology are not satisfying answered. The goal of the research is to compare and analyze the characteristics of horizontal and vertical structures of linear generator for bladeless wind power systems. The proposed topology will be analyzed using magnetic energy by equivalent magnetic circuit method, and then it has been compared and evaluated by finite element method. The results of this project will give elaborate information about new generator structures for wind power system and provide insights into the characteristics of bladeless wind power generation.

Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine (중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계)

  • Kim, Kwansu;Paek, Insu;Kim, Cheol-Jin;Kim, Hyun-Gyu;Kim, Hyoung-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine (풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석)

  • Kim, Don-Jean;Kwag, Seung-Hyun;Lee, Kyong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.

Autonomous Micro-grid Design for Supplying Electricity in Carbon-Free Island

  • Hwang, Woo-Hyun;Kim, Sang-Kyu;Lee, Jung-Ho;Chae, Woo-Kyu;Lee, Je-Ho;Lee, Hyun-Jun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1112-1118
    • /
    • 2014
  • In island and backcountry areas, electrical power is usually supplied by diesel generators. It is difficult for small scale diesel generators to have an economy of scale owing to the usage of fossil fuels to produce electricity. Also, there is a problem of carbon dioxide emissions that brings some environmental pollution to the entire region of the area. For solving those, this paper proposes a design method of autonomous micro-grid to minimize the fossil fuels of diesel generator, which is composed of diesel generator, wind turbine, battery energy storage system and photovoltaic generation system. The proposed method was verified through computer simulation and micro-grid operation system.

The activated scheme of Honam regional Wind Power Industry with Favorable Products (호남 풍력산업 유망상품 활성화 방안)

  • Cha, In Su;Kim, Dong Mook
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.510-511
    • /
    • 2011
  • This paper has represented about the activated scheme the Honam regional wind power industry favorable products. The favorable products are the MW offshore wind system with Outer-rotor type PMSG-6 products, the 3MW offshore wind system with adatation type of west-south sea, and the hybrid generator system with wind turbine technology basis-2 products.

  • PDF