• Title/Summary/Keyword: wind turbine blades

Search Result 259, Processing Time 0.038 seconds

Numerical Simulation of Electromagnetic Wave Scattering from Offshore Wind Turbine (해상 풍력발전기의 전자기파 산란에 관한 수치 시뮬레이션)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Choi, Gil-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.536-544
    • /
    • 2009
  • The performance of radars operated near an offshore wind farm region may be degraded due to the distorted signals by wind turbines. This degradation of radar systems includes ghost effects and doppler effects by a tower, nacelle, and turbine blades consisting of the wind turbine. In this paper, electromagnetic wave backscatterings from a offshore wind turbine are numerically simulated in terms of temporal radar cross section and radar cross section spectra, using a quasi-static approach based on physical optics and physical theory of diffraction. The simulations are carried out at 3.05 GHz for the seven yaw angles and four blade pitch angles. From the results, radar cross section values and doppler effect as turbine blades rotate are investigated.

Motion Estimation and Machine Learning-based Wind Turbine Monitoring System (움직임 추정 및 머신 러닝 기반 풍력 발전기 모니터링 시스템)

  • Kim, Byoung-Jin;Cheon, Seong-Pil;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1516-1522
    • /
    • 2017
  • We propose a novel monitoring system for diagnosing crack faults of the wind turbine using image information. The proposed method classifies a normal state and a abnormal state for the blade parts of the wind turbine. Specifically, the images are input to the proposed system in various states of wind turbine rotation. according to the blade condition. Then, the video of rotating blades on the wind turbine is divided into several image frames. Motion vectors are estimated using the previous and current images using the motion estimation, and the change of the motion vectors is analyzed according to the blade state. Finally, we determine the final blade state using the Support Vector Machine (SVM) classifier. In SVM, features are constructed using the area information of the blades and the motion vector values. The experimental results showed that the proposed method had high classification performance and its $F_1$ score was 0.9790.

Effects of Non-Uniform Inflow on Aerodynamic Behaviour of Horizontal Axis Wind Turbine

  • KIKUYAMA Koji;HASEGAWA Yutaka;KARIKOMI Kai
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.17-22
    • /
    • 2002
  • Non-uniform and unsteady inflow into a Horizontal Axis Wind Turbine (HAWT) brings about an asymmetric flow field on the rotor plane and an unsteady aerodynamic load on the blades. In the present paper effects of yawed inflow and wind shear are analyzed by an inviscid aerodynamic model based on the asymptotic acceleration potential method. In the analysis the rotor blades are represented by spanwise and chordwise pressure distribution composed of analytical first-order asymptotic solutions for the Laplace equation. As the actual wind field experienced by a HAWT is turbulent, the effects of the turbulence are also examined using the Veers' model.

  • PDF

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Statistical Blade Angular Velocity Information-based Wind Turbine Fault Diagnosis Monitoring System (블레이드 각속도 통계 정보 기반 풍력 발전기 고장 진단 모니터링 시스템)

  • Kim, Byoungjin;Kang, Suk-Ju;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.619-625
    • /
    • 2016
  • In this paper, we propose a new fault diagnosis monitoring system using gyro sensor-based angular velocity calculation for blades of the wind turbine system. First, the proposed system generates the angular velocity dataset for the rotation speed of the normal blade. Using the dataset, we estimate and evaluate the state of blades for the wind turbine by comparing the current state with the pre-calculated normal state. In the experimental results, the angular velocity of the normal state was higher than $360^{\circ}/s$ while that of the damaged blades was lower than $360^{\circ}/s$ and the standard deviation of the angular velocity was significantly increased.

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine (풍력발전기용 복합재 블레이드의 구조해석 및 인증시험)

  • Park, Sun-Ho;Han, Kyung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.299-302
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

Effects of blade configuration and solidity on starting torque of Darrieus wind turbine

  • Roh, Sung-Cheoul;Kang, Seung-Hee
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.169-177
    • /
    • 2021
  • This study investigates the effects of blade configuration and solidity of Darrieus wind turbine on the starting torque characteristics. Generally, the configuration of Darrieus wind turbine is divided into Troposkien, parabola, Catenary, Sandia, modified-parabola and straight types. A numerical analysis has been carried out using Multiple Stream Tube (MST) method to investigate the effect of blade configuration and solidity of Darrieus wind turbine on the starting torque under the initial low range of rotational speed. The simulation results show that the starting torque of Darrieus wind turbine varies considerably depending on the blade configuration. The initial starting torque was larger with Troposkien, Parabola, Catenary, and Sandia configurations than with modified parabola or straight types. The increase in solidity with increasing number of blades raised the starting torque and improved the dynamic stability during the initial operational speed of Darrieus wind turbine. Additionally, these torque results represent basic data for fluid-structure interaction (FSI) simulation of the steady-dynamic operation of the turbine.

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.