• Title/Summary/Keyword: wind tunnel tests

Search Result 438, Processing Time 0.023 seconds

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Response Time Index and Operation Time of Fixed Temperature Heat Detector (정온식 열감지기의 응답시간지수 및 작동시간)

  • 류호철;태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1993
  • Fixed temperature heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, hot wind tunnel tests and compartment fire experiments were performed to investigate the response time and temperature of fixed temperature heat detector. As a result, simple equations were derived which can be predicted the response time and temperature of the fixed temperature heat detector for the ramp type fire. Also other useful data, such as the effective temperature, time constant, response time index(RTI) were obtained.

  • PDF

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge (스카이브릿지로 연결된 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Yang, Ah-Ram;Lee, Dong-Guen;Ahn, Sang-Kyung;Oh, Jung-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • In this study, the vibration control performance of high-rise building structures connected by a sky-bridge has been investigated. The philosophy of vibration control using sky-bridges is to allow structures with different dynamic characteristics to exert control forces upon one another through sky-bridges to reduce the overall responses of the system. The the high-rise building structure connected by sky-bridge with 49 and 42 stories was used in this study to investigate the displacement, acceleration, reaction of bearings and stress of sky-bridge by analytical methods. To this end, historical earthquakes, an artificial earthquake and wind force time histories obtained from wind tunnel tests were used. Based on the analytial results, the use of sky-bridge can be effective in reducing the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Icing Wind Tunnel Tests to Improve the Surface Roughness Model for Icing Simulations (착빙 해석의 표면 거칠기 모델 개선을 위한 착빙 풍동시험 연구)

  • Son, Chankyu;Min, Seungin;Kim, Taeseong;Kim, Sun-Tae;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.611-620
    • /
    • 2018
  • For the past decades, the analytic model for distributed surface roughness has been developed to improve the accuracy of the icing simulation code. However, it remains limitations to validate the developed model and determine the empirical parameters due to the absence of the quantitative experimental data which were focused on the surface state. To this end, the experimental study conducted to analyze the ice covered surface state from a micro-perspective. Above all, the tendency of the smooth zone width which occurs near the stagnation point has been quantitatively analyzed. It is observed that the smooth zone width is increased as growing the ambient temperature and freestream velocity. Next, the characteristics of the ice covered surface under rime and glaze ice have been analyzed. For rime ice conditions, ice elements are developed as the opaque circular corn in the opposite direction of freestream. The height and interval of each circular corn are increased as rising the ambient temperature. For glaze ice conditions, numerous lumps of translucent ice can be observed. This is because the beads formed by gravity concentrate and froze on the lower surface.

Flap Hinge Moment Estimation through Ground and Flight Tests (지상 및 비행 시험을 통한 플랩의 힌지 모멘트 추정)

  • Ko, Myung-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.464-470
    • /
    • 2018
  • In this paper, a practical method of estimating the flap hinge moments which change according to the aircraft flap operations was introduced. For the flap design, the hinge moment derived by structural load analysis and wind tunnel tests was able to be compared with the real flight hinge moment, and the static safety of the flap structure could be verified though this comparison. In order to perform the tests, two strain gauges were installed on the flap hinge and an onboard device for aircraft load monitoring was utilized. Through the ground test, the correlation between the strain and the moment of the flap hinge was calibrated with analytic and finite element analysis. During the flight test, strain signals together with the flap deflection angles and airspeed were recorded. Finally, the flight hinge moments could be predicted by the measured strain which was calibrated with the analytic and the finite element analysis.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Experimental studies on the aerodynamic performance of two box girders with side openings

  • Wang, Jiaqi;Yagi, Tomomi;Ushioda, Jun;Noguchi, Kyohei;Nagamoto, Naoki;Uchibori, Hiroyuki
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A butterfly web girder is a box-shaped girder with discretely distributed side openings along the spanwise direction. Until now, there have been few studies related to the aerodynamic performance of the butterfly web bridge. The objective of the current study was to clarify the effects of the side openings on the aerodynamic performance of the girder. Two butterfly web girders with side ratios B/D = 3.24 and 5, where B is the girder width and D is the depth, were examined through a series of wind tunnel tests. A comparison of the results for butterfly web girders and conventional box girders of the same shape confirmed that the side openings stabilized the vortex-induced vibration and galloping when B/D = 3.24, whereas the vortex-induced vibration and torsional flutter were stabilized when B/D = 5. The change in the flow field due to the side openings contributed to the stabilization against the vibration. These findings not only confirmed the good aerodynamic performance of the butterfly web bridge but also provided a new method to stabilize the box girder against aerodynamic instabilities via discretely distributed side openings.