• Title/Summary/Keyword: wind tunnel tests

Search Result 438, Processing Time 0.025 seconds

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion (등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구)

  • Je S. E.;Jung S. G.;Kwag S. H.;Myong R. S.;Cho T. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented. Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted th handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and provided good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations in the design period.

  • PDF

A NUMERICAL STUDY ON AERODYNAMIC CHARACTERISTICS OF A ROTATING PARACHUTE IN STEADY DESCENDING MOTION (등속도로 하강중인 회전 낙하산의 공력특성에 관한 수치적 연구)

  • Je S.E.;Jung S.G.;Kwag S.H.;Myong R.S.;Cha T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.52-56
    • /
    • 2006
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted to handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and produced good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations.

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method (CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험)

  • Oh, Se-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.

Calibration of 6-component External Balance (외장형 6분력 풍동저울 교정)

  • Jo, Tae-Hwan;Jeong, Jin-Deok;Kim, Yang-Won;Jang, Byeong-Hui
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.47-52
    • /
    • 2006
  • The external balance of KARl LSWT is installed by Aerotech at 1998. It has been used for more than 70 tests until 2004. The upgrade and re-calibration program are planed to solve the problem that revealed in 7-years operation and to increase the accuracy of the system. In this paper, 3 calibration results are presented. The first one is the results done by Aerotech at 1998, the second one is the results by using quick-loading system at 2004, and the last one is the results done at 2005.

  • PDF

A Study on the Errors in Skin Friction Measurements due to Surface Temperature Mismatch (표면온도 차이에 의한 표면마찰력 측정 오차에 대한 연구)

  • 백승욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • An experimental study was performed to investigate the effect of surface temperature mismatch on measurements of skin friction using a plug-type skin friction gage mounted on the side wall of a supersonic wind tunnel. The freestream Mach number was 2.4 and Reynolds number per meter was $5.25 {\times}10^7$ with total pressure of 50 psi and total temperature of 275K. Temperature mismatch between the gage surface and surrounding wall surface was generated by hot water injection using the active temperature control system. Results of the tests showed that the temperature mismatch made sizable effects on the measurements of skin friction.

  • PDF

Use of CFD for Aerodynamic Interference Modelling of Jet-Controlled Missile (측추력 제어 유도탄의 공력모델링시 CFD의 적용)

  • Sung W. J.;Hong S. K.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.120-125
    • /
    • 2003
  • Recently, lateral jet has been adopted as an effective control device for high maneuverable tactical missiles in supersonic regime. Aerodynamic interference caused by the lateral jet can be categorized into two phenomena : local interaction redistributing surface pressure near the jet exit region and downstream interaction affecting tail control effectiveness. As part of on-going research, this paper deals with the aerodynamic modeling to predict the variation of force and moment when lateral jet of is activated on the missile body. For this purpose, a series of numerical simulation has been performed and the results are presented. Using the information obtained by CFD, aerodynamic model of preliminary level has been constructed and is reviewed. Some relevant comparison with wind tunnel tests are presented.

  • PDF

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF