• 제목/요약/키워드: wind tunnel simulation

검색결과 304건 처리시간 0.024초

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

공기저항 저감을 위한 컨테이너선 상부구조물 형상설계 및 성능평가 (Design and Performance Evaluation of Superstructure Modification for Air Drag Reduction of a Container Ship)

  • 김윤식;김광수;정성욱;정승규;반석호;김진
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.8-18
    • /
    • 2015
  • Reduction of the fuel oil consumption and corresponding greenhouse gas exhausted from ships is an important issue for today's ship design and shipping. Several concepts and devices on the superstructure of a container ship were suggested and tested in the wind tunnel to estimate the air drag reduction. As a preliminary performance evaluation, air drag contributions of each part of the superstructure and containers were estimated based on RANS simulation respectively. Air drag reduction efficiency of shape modification and add-on devices on the superstructure and containers was also estimated. Gap-protectors between containers and a visor in front of upper deck were found to be most effective for drag reduction. Wind tunnel tests had been carried out to confirm the drag reduction performance between the baseline(without any modification) configuration and two modified superstructure configurations which were designed and chosen based on the computation results. The test results with the modified configurations show considerable aerodynamic drag reduction, especially the gap-protectors between containers show the largest reduction for the wide range of heading angles. RANS computations for three configurations were performed and compared with the wind tunnel tests. Computation result shows the similar drag reduction trend with experiment for small heading angles. However, the computation result becomes less accurate as heading angle is increasing where the massively separated flow is spread over the leeward side.

A "Dynamic Form-Finding" Approach to Environmental-Performance Building Design

  • Yao, Jia-Wei;Lin, Yu-Qiong;Zheng, Jing-Yun;Yuan, Philip F.
    • 국제초고층학회논문집
    • /
    • 제7권2호
    • /
    • pp.145-151
    • /
    • 2018
  • Newly-designed high-rise buildings, both in China and abroad, have demonstrated new innovations from the creative concept to the creative method. from the creative concept to the creative method. At the same time, digital technology has enabled more design freedom in the vertical dimension. "Twisting" has gradually become the morphological choice of many city landmark buildings in recent years. The form seems more likely to be driven by the interaction of aesthetics and structural engineering. Environmental performance is often a secondary consideration; it is typically not simulated until the evaluation phase. Based on the research results of "DigitalFUTURE Shanghai 2017 Workshop - Wind Tunnel Visualization", an approach that can be employed by architects to design environmental-performance buildings during the early stages has been explored. The integration of a dynamic form-finding approach (DFFA) and programming transforms the complex relationship between architecture and environment into a dialogue of computer language and dynamic models. It allows the design to focus on the relationship between morphology and the surrounding environment, and is not limited to the envelope form itself. This new concept of DFFA in this research consists of three elements: 1) architectural form; 2) integration of wind tunnel and dynamic models; and 3) environmental response. The concept of wind tunnel testing integrated with a dynamic model fundamentally abandons the functional definition of the traditional static environment simulation analysis. Instead it is driven by integral environmental performance as the basic starting point of morphological generation.

전산유체역학을 이용한 항공기 프로펠러 공력특성 연구 (Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers)

  • 조규철;김효진;박일주;장성복
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.917-926
    • /
    • 2012
  • 본 연구는 고효율 복합재 프로펠러를 개발하기 위하여, 항공기 프로펠러 효율 특성 해석을 수행하였다. 비선형 수치해석을 이용하여 프로펠러의 공력 특성을 분석하고, 풍동 실험결과와 비교 분석하였다. 유동해석코드는 비선형 유동방정식인 RANS(Reynolds Averaged Navier-Stocks)를 수치해석화한 코드를 사용하였다. 해석 결과, 수치해석을 통하여 얻어진 프로펠러의 추력 및 출력계수는 실험결과와 비교하여 다소 높게 분석되었으며, 추력과 출력의 비로부터 계산된 프로펠러 효율은 실험결과와 잘 부합하는 것으로 확인하였다.

CFD를 활용한 Flow Angularity 풍동시험기법의 외장분리 해석(1) (Store Separation Analysis of Flow Angularity Wind Tunnel Test Technique using CFD (1))

  • 손창현;서성은
    • 한국항공우주학회지
    • /
    • 제45권1호
    • /
    • pp.10-20
    • /
    • 2017
  • 본 연구는 기존 Flow Angularity 장착물 분리 풍동시험 기법을 전산유체해석(Computational Fluid Dynamics)에 적용하여 해석 결과로부터 유동각 데이터베이스를 구성하고 6자유도 분리 궤적 해석한 결과를 전산유체해석의 CTS(Captive Trajectory Simulation) 해석 결과와 비교하여 CFD 해석 기법의 적용 가능성을 확인 한 것이다. Flow Angularity 기법의 전산유체해석 결과는 항공기와 외장간의 각 위치들에서 획득된 공력계수 데이터와 비교하여 데이터의 적절성을 확인하였다. 또한 Flow Angularity 기법으로 획득된 전산유체해석 데이터로부터 획득된 6자유도 외장 분리 궤적과 전산유체해석으로 해석한 CTS 외장분리 궤적을 비교하여 해석 기법의 적용 가능성을 확인하였다.

차량용 열제어 관리 시스템의 성능 시뮬레이션 프로그램 개발 (Development of Simulation Program of Vehicle Thermal Managements System)

  • 배석정;허형석;김현철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2008
  • The computer-aided performance simulation can reduce periods for development of products and cut down on the cost comparing with former trial-and-error procedures. This study has developed a simulation program for a vehicle thermal management system integrating an engine cooling system and an air conditioning system considering interactions and arrangement of air side heat exchangers such as power steering oil cooler, air-cooled transmission oil cooler, condenser, and radiator. The program may be also used for the system performance analysis according to the configuration of the engine coolant side heat exchangers such as water-cooled transmission oil cooler, EGR cooler, and heater core. Experiments utilizing an environmental wind tunnel has been conducted to assess the performance of the system according to the arrangement of air side heat exchangers. Some modification of the coolant loop layout can enhance the heat core performance up to 7% according to the results of the simulations.

  • PDF

고속철도 판토그래프의 공력소음 기여도 연구 (Prediction of the Aerodynamic Noise Generated by Pantograph on High Speed Trains)

  • 한재현;김태민;김정태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.425-431
    • /
    • 2013
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. To analyze contribution of the pantograph to the noise of high-speed train, simulation results compared with measurement results of exterior noise. The simulation reuslts found that pantograph is a dominant noise source of high-speed trains's exterior noise in low frequency section. This dominant noise was come out from vortex shedding of the panhead in the pantograph. This research will be utilized for reduce sound pressure level of pantograph.

  • PDF