• Title/Summary/Keyword: wind tunnel simulation

Search Result 304, Processing Time 0.028 seconds

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Turbulence Effects on Wind-Induced Response of Rectangular Sections with Fairing (페어링부착단면의 풍응답특성에 미치는 난류효과에 관한 연구)

  • Kim Heeduck;Kim Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.439-442
    • /
    • 2002
  • In this study, a turbulence simulation is carried out in a suction type wind tunnel using grids, where turbulent flows with various turbulence intensity are successfully produced by the change of grid size, arrangement of grids and settling position, respectively. Response tests of rectangular cylinder models with aspect ratio of 2 and 4 are carried out in smooth flow and generated turbulent flows. Additionally, two types of fairing are considered such as right triangle and regular triangle. The effects of wind velocity fluctuations and fairing are discussed on vortex-induced oscillation.

  • PDF

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.

Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.100-113
    • /
    • 2017
  • Snap rolling during hard turning and instability during emergency rising are important features of submarine operation. Hydrodynamics modeling using a high incidence flow angle is required to predict these phenomena. In the present study, a quasi-steady dynamics model of a submarine suitable for high-incidence-angle maneuvering applications is developed. To determine the hydrodynamic coefficients of the model, static tests, dynamic tests, and control surface tests were conducted in a towing tank and wind tunnel. The towing tank test is conducted utilizing a Reynolds number of $3.12{\times}10^6$, and the wind tunnel test is performed utilizing a Reynolds number of $5.11{\times}10^6$. In addition, least squares, golden section search, and surface fitting using polynomial models were used to analyze the experimental results. The obtained coefficients are presented in tabular form and can be used for various purposes such as hard turning simulation, emergency rising simulation, and controller design.

Numerical simulation of diffusion in the stratified flow

  • Mizumoto N.;Kawamura T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.255-256
    • /
    • 2003
  • Simulations of atmospheric diffusion process under stable and unstable conditions were carried out using both numerical and experimental methods. Results from the previous study show that numerical simulation using 3-dimensional incompressible Navier-Stokes equation and density deviation are in good agreement with typical plume pattern. In this study, we use experimental data of temperature and wind profile obtained from a thermally stratified wind tunnel as initial conditions for numerical simulation and compare the results.

  • PDF

Urban Model for Mean Flow and Turbulence (평균풍속 및 난류 예측을 위한 도심지 모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon;Kim, Seog-Cheol;Jang, Dong-Du;Joo, Seok-Jun;Shim, Woo-Sup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF

Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy (기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석)

  • Lee, Do Kwan;Lee, Sang Jeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.

The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics (전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가)

  • Han, Sang-Eul;Park, Ji-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF