• Title/Summary/Keyword: wind tunnel modeling

Search Result 97, Processing Time 0.032 seconds

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

Dynamic wind effects : a comparative study of provisions in codes and standards with wind tunnel data

  • Kijewski, T.;Kareem, A.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.77-109
    • /
    • 1998
  • An evaluation and comparison of seven of the world's major building codes and standards is conducted in this study, with specific discussion of their estimations of the alongwind, acrosswind, and torsional response, where applicable, for a given building. The codes and standards highlighted by this study are those of the United States, Japan, Australia, the United Kingdom, Canada, China and Europe. In addition, the responses predicted by using the measured power spectra of the alongwind, acrosswind and torsional responses for several building shapes tested in a wind tunnel are presented and a comparison between the response predicted by wind tunnel data and that estimated by some of the standards is conducted. This study serves not only as a comparison of the response estimates by international codes and standards, but also introduces a new set of wind tunnel data for validation of wind tunnel-based empirical expressions.

Static Analysis of a Small Scale Ducted-Fan UAV using Wind Tunnel Data

  • Choi, Youn-Han;Suk, Jin-Young;Hong, Sang-Hwee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2012
  • This paper discusses the mathematical modeling of a small scale ducted-fan UAV and examines its results in comparison to the wind tunnel test. A wind tunnel test is first performed, producing a substantial amount of test data. The acquired set of wind tunnel test data is then categorized and approximated as mathematical functions. Finally, the mathematically modeled forces and moments acting on the UAV are compared with the acquired wind tunnel data. The analysis involves a gradient-based algorithm and is applied to extract trim states with respect to various flight conditions. Consequently, a numerical analysis demonstrates that there exists a reasonable flight status with respect to airspeed.

Study of Gust Response Characteristics for Flexible Wing by Wind Tunnel Test (풍동시험을 통한 유연날개 돌풍응답 특성 분석)

  • Lee, Sang-Wook;Kim, Tae-Uk;Hwang, In-Hee;Im, Jae-Hyung;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1329-1332
    • /
    • 2007
  • In this study, the design method of flexible wing model for gust response measurement wind tunnel test was presented. The design concept proposed herein was validated by modal testing of the flexible wing model manufactured. In addition, aeroservoelastic modeling method for flexible wing model was presented and validated by comparing the gust response analysis results from the method proposed herein with those of commercial software. The gust response characteristics of the flexible wing model was studied by wind tunnel test for measuring the flexible wing gust response due to the induced gust excitation by gust generator. The aeroservoelastic modeling methods proposed and the wind tunnel test results obtained in this study can be applied for wind tunnel testing of the flexible wing for gust response alleviation.

  • PDF

A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD (풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구)

  • Yim, Kyung Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.

Mathematical modeling study for the stagnation pressure control system of the blow-down type wind tunnel (불어내기식 풍동의 정체실 압력제어 시스템 모델링)

  • 김영준;권정태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.206-211
    • /
    • 1992
  • A mathematical model of the blow-down type wind tunnel is developed in order to design the controller which controls the stagnation pressure being used to obtain the setpoint Mach Number. The motion of compressible fluids in the tunnel is modeled using the one-dimensional gasdynamics. The time responses of the wind tunnel states, such as pressures, mass flow rates, and valve open area, are investigated by digital computer simulation. By the simulation study it is shown that the real blow-down wind tunnel can be simulated by the obtained mathematical model.

  • PDF

Wind tunnel test of wind turbine in United States and Europe (미국과 유럽의 풍력터빈 풍동실험)

  • Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.42-46
    • /
    • 2005
  • In spite of fast growing of prediction codes, there is still not negligible uncertainty in their results. This uncertainty affects on the turbine structural design and power production prediction. With the growing size of wind turbine, reducing this uncertainty is becoming one of critical issues for high performance and efficient wind turbine design. In this respect, there are international efforts to evaluate and tune prediction codes of wind turbine. As the reference data for this purpose, field test data is not appropriate because of its uncontrollable wind characteristics and its inherent uncertainty. Wind tunnel can provide controllable wind. For this reason, NREL has done the full scale test of the 10m turbine at NASA-Ames. With this reference data, a blind comparison has been done with participation of 18 organizations with 19 modeling tools. The results were not favorable. In Europe, a similar project is going on. Nine organizations from five countries are participating in the MEXICO project to do full scale wind tunnel tests and calculation with prediction codes. In this study. these two projects were reviewed in respect of wind tunnel test and its contribution. As a conclusion, it is suggested that scale model wind tunnel tests can be a complementary tool to calculation codes which were evaluated worse than expected.

  • PDF

Acrosswind aeroelastic response of square tall buildings: a semi-analytical approach based of wind tunnel tests on rigid models

  • Venanzi, I.;Materazzi, A.L.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.495-508
    • /
    • 2012
  • The present paper is focused on the prediction of the acrosswind aeroelastic response of square tall buildings. In particular, a semi-analytical procedure is proposed based on the assumption that square tall buildings, for reduced velocities corresponding to operational conditions, do not experience vortex shedding resonance or galloping and fall in the range of positive aerodynamic damping. Under these conditions, aeroelastic wind tunnel tests can be unnecessary and the response can be correctly evaluated using wind tunnel tests on rigid models and analytical modeling of the aerodynamic damping. The proposed procedure consists of two phases. First, simultaneous measurements of the pressure time histories are carried out in the wind tunnel on rigid models, in order to obtain the aerodynamic forces. Then, aeroelastic forces are analytically evaluated and the structural response is computed through direct integration of the equations of motion considering the contribution of both the aerodynamic and aeroelastic forces. The procedure, which gives a conservative estimate of the aeroelastic response, has the advantage that aeroelastic tests are avoided, at least in the preliminary design phase.

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

A STUDY ON THE PREDICTION OF THE BASE FLOW CHARACTERISTICS OF A LAUNCH VEHICLE USING CFD

  • Kim Younghoon;Ok Honam;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.258-261
    • /
    • 2004
  • Numerical simulations are made to predict the axial force coefficients of a two-stage launch vehicle, and the results are compared with those by wind tunnel tests. It is found that the forebody axial force is not affected by whether the base of the body is modeled or not. Modeling the sting support used in wind tunnel tests reduced the base axial force compared to the results without it. The present calculation shows that the forebody axial forces are underestimated while the base axial forces are overestimated. The total axial force, therefore, compares with the experimental data with better accuracy by cancelling out the errors of opposite signs. Modeling of the sting support in numerical simulations is found to be necessary to get a better agreement with the experiments for both base and overall axial force coefficients.

  • PDF