• Title/Summary/Keyword: wind stability

Search Result 784, Processing Time 0.029 seconds

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie;Lim, Chi Hong;Kim, A Reum;Woo, Dong Min;Kwon, Hye Jin;Cho, Yong Chan;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.10
    • /
    • pp.290-301
    • /
    • 2017
  • Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Speed Control for Electric Motorcycle Using Fuzzy Controller (퍼지 제어기를 이용한 전기 이륜차의 속도 제어)

  • Ban, Dong-Hoon;Park, Jong-Oh;Lim, Young-Do
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper presents speed control of an electric motorcycle using a fuzzy controller. The electric motorcycle required to meet not only fast throttle response but also stability, when it is on a cruise. However, a 1.5KW (50cc) electric motorcycles selling in the current market are difficult to cruise under the following conditions which are occupant's weight, load weight, wind resistance and road conditions (dirt roads, asphalt road). Because of these reasons, the rapid speed changing occurs in uphill and downhill road. To solve these problems, The input value for Improved fuzzy controller use the speed error and error variance. The output value for improved fuzzy controller uses Q-axis of the motor controlled variable. The D-axis of the motor output for improved fuzzy control uses D-axis controlled variable in proportional to Q-axis controlled variable. Improved fuzzy controller drives the electric motorcycle equipped with IPMSM. The control subject used in this paper is a 1.5KW electric motorcycle equipped with improved fuzzy controller that was used to control the motor speed. To control IPMSM Type of motor torque, D, Q-axis current controller was used. The Fuzzy controller using the proposed algorithm is demonstrated by experimental hardware simulator.

Quality Properties of gamma irradiated Kwamegi(semi-dried Cololabis seira) (감마선 조사된 꽁치과메기(semi-dried Cololabis seira)의 품질특성)

  • Kim, Duk-Jin;Lee, Ju-Woon;Cho, Kyung-Hwan;Yook, Hong-Sun;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1128-1134
    • /
    • 2000
  • This study was carried out to evaluate quality properties of gamma-irradiated Kwamegi prepared from Cololabis seira semi-dried by cold sea wind. Edible portion of Kwamegi was prepared from whole body, vacuum-packaged, gamma-irradiated in the doses of 3 or 5 kGy, and stored at $5^{\circ}C$ for 60 days. Volatile basic nitrogen and trimethylamine contents were not different by gamma irradiation. During storage increase of those two compounds were inhibited depending upon the dose. Thiobarbituric acid values did not differ in all samples, regardless of irradiation and storage. The amount of total volatile compounds of Kwamegi decreased by irradiation. Rheological properties were not affected by irradiation and were maintained up to 60 day when the Kwamegi was irradiated at 5 kGy dose, but those of control was softened. Sensory evaluation had no differences in all samples immediately after irradiation. Sensory quality of Kwamegi irradiated were organoleptically adequate, however that of control was deteriorated. In conclusion, these results indicate that gamma irradiation technique can be used to maintain the quality of Kwamegi.

  • PDF

Evaluation of Permanent Lateral Displacement of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반에서 횡방향 반복하중을 받는 말뚝의 영구수평변위 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Pile foundations that support offshore structures or transmission towers are dominantly subjected to cyclic lateral loads due to wind and waves, causing permanent displacement which can severely affect stability of the structures. In this study, a series of cyclic lateral load tests were conducted on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the permanent displacement of a cyclic laterally loaded pile. Test results showed that the cyclic lateral loads accumulated the irreversible lateral displacement, so-called permanent displacement. As the number of cyclic lateral load increased, accumulated permanent displacement increased, but the permanent displacement due to one loading cycle gradually decreased. In addition, the permanent displacement of a pile increased with decrement of relative density and decreased by soil saturation. From the test results, the normalized permanent displacement defined as the cumulative permanent displacement to the initial permanent displacement ratio was investigated, and empirical equations for predicting the normalized permanent displacement was developed in terms of relative density of the soil and the number of cyclic lateral load.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

A study on the development of distribution simulator and simulation results for use in distribution automation system of IEC 61850 protocol (IEC 61850 프로토콜의 배전자동화시스템에 사용을 위한 배전시뮬레이터 개발과 시뮬레이션 결과에 관한 연구)

  • Kim, Jae-Hong;Oh, Jae-Gon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

Comparative Analysis of IEC Standard and Simulation Results for Hydrogen Hazardous Distance (수소 폭발위험범위에 대한 IEC기준과 시뮬레이션 결과의 비교분석)

  • Seung-Hyo An;Eun-Hee Kim;Seon-Hee Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In workplaces handling flammable gas such as hydrogen, hazardous area is determined through KS C IEC 60079-10-1 standard. Because this standard determines the hazardous distance based on the release characteristic regardless of the type of gas, indoor/outdoor conditions, and atmospheric conditions, concerns are being raised about the effectiveness. In this study, simulations (PHAST, HyRAM) were performed to calculate the hazardous distance for hydrogen under various release characteristics and atmospheric conditions, and compared these results to IEC standard log-log graph. Also, we performed regression analysis according to each result. we found that the simulation results were 0.6 to 3.8 times less than the IEC standard, presented convenient linear regression equations. In addition, We confirmed that the results of hazardous distance varied based on wind velocity and atmospheric stability at the same release characteristic. In addition, we derived linear regression equations for release characteristics and hazardous distance that can be conveniently utilized. So, when classifying hazardous area in workplaces where they handle the hydrogen, the integrated graph and linear regression equation are helpful for confirming the hazardous area. Moreover, it is expected that the economic burden will be minimized by being able to classify reasonable hazardous area and to greatly reduce the risk of hydrogen explosion.

Demand Shifting or Ancillary Service?: Optimal Allocation of Storage Resource to Maximize the Efficiency of Power Supply (Demand Shifting or Ancillary Service?: 효율적 재생발전 수용을 위한 에너지저장장치 최적 자원 분배 연구)

  • Wooyoung Jeon
    • Environmental and Resource Economics Review
    • /
    • v.33 no.2
    • /
    • pp.113-133
    • /
    • 2024
  • Variable renewable energy (VRE) such as solar and wind power is the main sources of achieving carbon net zero, but it undermines the stability of power supply due to high variability and uncertainty. Energy storage system (ESS) can not only reduce the curtailment of VRE by load shifting but also contribute to stable power system operation by providing ancillary services. This study analyzes how the allocation of ESS resources between load shifting and ancillary service can contribute to maximizing the efficiency of power supply in a situation where the problems caused by VRE are becoming more and more serious. A stochastic power system optimization model that can realistically simulate the variability and uncertainty of VRE was applied. The analysis time point was set to 2023 and 2036, and the optimal resource allocation strategy and benefits of ESS by varying VRE penetration levels were analyzed. The analysis results can be largely summarized into the following three. First, ESS provides excellent functions for both load shifting and ancillary service, and it was confirmed that the higher the reserve price, the more limited the load shifting and focused on providing reserve. Second, the curtailment of VRE can be a effective substitute for the required reserve, and the higher the reserve price level, the higher the curtailment of VRE and the lower the required amount of reserve. Third, if a reasonable reserve offer price reflecting the opportunity cost is applied, ESS can secure economic feasibility in the near future, and the higher the proportion of VRE, the greater the economic feasibility of ESS. This study suggests that cost-effective low-carbon transition in the power system is possible when the price signal is correctly designed so that power supply resources can be efficiently utilized.

Overview of the Korean Marine Industry and VPP Analysis of a 28ft Sailing Yacht (대한민국의 해양 레저 시장 및 28ft급 세일요트의 VPP 성능해석 연구)

  • Yeongmin Park;Hoyun Jang;Minsu Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2024
  • The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.