• 제목/요약/키워드: wind speed profile

검색결과 97건 처리시간 0.026초

풍하중을 고려한 확률론적 운동특성 평가기법 개발에 관한 연구 (Development of a Probabilistic Approach to Predict Motion Characteristics of a Ship under Wind Loads)

  • 이상의
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.315-323
    • /
    • 2023
  • 지난 10년간, 복원력 상실로 인한 어선의 해양 사고는 지속해 증가하고 있다. 특히, 소형선박 사고의 대부분은 갑작스러운 바람이 주요 원인으로 지목되었다. 바람에 의한 소형선박의 갑작스러운 사고를 예방하기 위해서는 체계적인 분석기법 개발이 필요한 실정이다. 본 연구는 확률론적 극값 추정법을 기반으로 선박의 운동성능에 바람이 미치는 영향을 평가하는 데 그 목적이 있다. 이를 위해 운동 해석, 극값 추출, 운동 특성 분석 등의 연구를 수행하였다. 운동 해석은 Sea State 5의 파랑에서 파도, 파도와 균일 바람, 파도와 NPD풍속 모델 바람이 작용하는 3가지 조건을 적용하였다. 극값 추출은 Hysteresis 필터링 및 Peak-Valley 필터링 기법을 적용하였다. 추출된 극값을 이용하여 적합도 시험(Goodness of Fit Test)을 4가지 분포함수에 대해 수행하여 극값을 가장 잘 표현하는 최적의 분포함수를 선정하였다. 어선의 운동 특성은 3가지 주기 운동에 대하여 (Heave, Roll, Pitch)에 평가 후, 결과를 비교하였다. 선박의 운동성능 해석은 상용 솔버인 ANSYS-AQWA를 이용하였다.

Accretion Flow and Raman-scattered O VI and C II Features in the Symbiotic Nova RR Telescopii

  • Heo, Jeong-Eun;Lee, Hee-Won;Angeloni, Rodolfo;Palma, Tali;Di Mille, Francesco
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.39.2-39.2
    • /
    • 2018
  • RR Tel is an interacting binary system in which a hot white dwarf (WD) accretes matter from a Mira variable via gravitational capture of the stellar wind. We present a high-resolution optical spectrum of RR Tel obtained with MIKE at Magellan-Clay telescope, Chile. We find broad emission features at 6825, 7082, 7023, and $7053{\AA}$, which are formed through Raman scattering of far-UV O VI ${\lambda}{\lambda}$ 1032 and $1038{\AA}$, C II ${\lambda}{\lambda}$ 1036 and $1037{\AA}$ with atomic hydrogen. Raman O VI 6825 and 7082 features are characterized by double-peaked profiles indicative of an accretion flow with a characteristic speed ~ 30km/s, whereas the Raman C II features exhibit a single Gaussian profile with FWHM ${\sim}10{\AA}$. Monte Carlo simulations for Raman O VI and C II are performed by assuming that the emission nebula around the WD consists of the inner O VI disk with a representative scale of 1 AU and the outer part with C II sphere. The best fit for Raman profiles is obtained with an asymmetric matter distribution of the O VI disk, the mass loss rate of the cool companion ${\dot{M}}{\sim}2{\times}10^{-6}M_{{\odot}/yr}$ and the wind terminal velocity v~10 km/s. We also find O VI doublet at 3811 and $3834{\AA}$, which are blended with other emission lines. Our profile decomposition shows that the O VI ${\lambda}{\lambda}$ 3811, 3834 doublet have a single Gaussian profile with a width ~ 25 km/s. A comparison of the restored fluxes of C II ${\lambda}{\lambda}$ 1036 and 1037 from Raman C II features with the observed C II ${\lambda}1335$ leads to an estimate of a lower bound of N(CII) > $9.87{\times}10^{13}cm^{-2}$ toward RR Tel, which appears consistent with the presumed distance D ~ 2.6 kpc.

  • PDF

PROPAGATION OF SUDDEN IMPULSES IN A DIPOLAR MAGNETOSPHERE

  • LEE DONG-HUN;SUNG SUK-KYUNG
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.101-107
    • /
    • 2003
  • The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구 (A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair)

  • 조성민;이도영;김래성;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석 (Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD)

  • 이상연;이인복;권경석;하태환;여욱현;박세준;김락우;조예슬;이승노
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

Aqua 위성 AMSU-A 고도별 온도자료를 이용한 열적 대류권계면 고도 산출 및 활용 (Retrieval of Thermal Tropopause Height using Temperature Profile Derived from AMSU-A of Aqua Satellite and its Application)

  • 조영준;신동빈;권태영;하종철;조천호
    • 대기
    • /
    • 제24권4호
    • /
    • pp.523-532
    • /
    • 2014
  • In this study, thermal tropopause height defined from WMO (World Meteorological Organization) using temperature profile derived from Advance Microwave Sounding Unit-A (AMSU-A; hereafter named AMSU) onboard EOS (Earth Observing System) Aqua satellite is retrieved. The temperature profile of AMSU was validated by comparison with the radiosonde data observed at Osan weather station. The validation in the upper atmosphere from 500 to 100 hPa pressure level showed that correlation coefficients were in the range of 0.85~0.97 and the bias was less than 1 K with Root Mean Square Error (RMSE) of ~3 K. Thermal tropopause height was retrieved by using AMSU temperature profile. The bias and RMSE were found to be -5~ -37 hPa and 45~67 hPa, respectively. Correlation coefficients were in the range of 0.5 to 0.7. We also analyzed the change of tropopause height and temperature in middle troposphere in the extreme heavy rain event (23 October, 2003) associated with tropopause folding. As a result, the distinct descent of tropopause height and temperature decrease of ~8 K at 500 hPa altitude were observed at the hour that maximum precipitation and maximum wind speed occurred. These results were consistent with ERA (ECMWF Reanalysis)-Interim data (potential vorticity, temperature) in time and space.

기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석 (Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones)

  • 정지효;신승숙;황성은;이승호;이승협;김백조;김승범
    • 한국지구과학회지
    • /
    • 제41권6호
    • /
    • pp.575-587
    • /
    • 2020
  • 기상현상관측은 기상청에서 다양한 방법(지상, 고층, 해양, 항공, 등)으로 관측되고 있다. 하지만, 인간생활에 많은 영향을 미치는 대기경계층 관측에는 한계가 있다. 특히, 존데 또는 항공기를 이용한 기상관측은 경제적인 측면에서 상당한 비용이 필요하다. 따라서 본 연구의 목적은 기상드론을 이용하여 국지기상현상 중 해륙풍 연직분포에 대한 기상 인자들을 측정하고 분석하는 것이다. 해륙풍의 공간적 분포를 연구하기 위해 보성지역 표준기상관측소의 보성종합기상탑을 포함한 다른 세 지점(해안가, 산기슭, 산중턱)에 동일한 통합기상센서를 각 드론에 탑재하였다. 2018년 8월 4일 1100 LST부터 1800 LST까지 30분 간격으로 최대 400 m 고도까지 기온, 상대 습도, 풍향, 풍속, 기압의 연직 프로파일 관측이 수행되었다. 기온, 상대 습도, 기압에 대한 기상현상의 공간적 특성은 네 지점에서 보이지 않았다. 강한 일사량 시간대에 중간지점(~100 m)에서 강한 바람(~8 m s-1)이 관측되었고, 오후에는 풍향이 내륙지역의 상층부터 서풍으로 바뀌었다. 기상드론을 이용하여 관측한 하부 대기층의 분석결과는 보다 정확한 기상예보 향상에 도움이 될 것으로 기대된다.