• Title/Summary/Keyword: wind speed generator

Search Result 383, Processing Time 0.025 seconds

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

Probabilistic Production Cost Credit Evaluation of Wind Turbine Generators (풍력발전기의 확률론적 발전비용 절감기여도 평가)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2153-2160
    • /
    • 2008
  • This paper develops an algorithm for probabilistic production cost credit evaluation of wind turbine generators(WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. Case study demonstrates that the wind speed credit in view point of economics can be assessed by using the proposed methodology.

LQR control of Wind Turbine (풍력터빈의 LQR 제어)

  • Nam, Yoon-su;Jo, Jang-whan;Lim, Chang-Hee;Park, Sung-su;Bottasso, Carlo L.
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

Simulation of Dynamic Torsional Vibration during Grid Low Voltage in a PMSG Wind Power Generation System (PMSG 풍력발전시스템에서 전원 저전압 발생시 비틀림 진동 동특성 시뮬레이션)

  • Kwon, Sun-Hyung;Song, Seung-Ho;Choi, Ju-Yeop;Jeong, Seung-Gi;Choy, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.242-244
    • /
    • 2011
  • A wind generator system model includes wind model, rotor dynamics, synchronous generator, power converter, distribution line and infinite bus. This paper investigates the low-Voltage Ride-Through capability of PMSG wind turbine in a variable speed. The drive train of a wind turbine on 2-mass modeling can observe the shaft torsional vibration when the low-voltage occur. To reduce the torsional vibration when the low-voltage occur, this paper designs suppression control algorithm of the torsional vibration and implements simulation. A Matlab/Simulink is used to investigate the response during the transient state.

  • PDF

750kW Gearless Type Wind Turbine Generator System (750kW급 Gearless형 국산화 풍력발전시스템)

  • Ryu, Ji-Yoon;Park, Jin-Il;Kim, Dae-Hyun;Hwang, Jin-Su;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.245-248
    • /
    • 2006
  • The first of korean 750kW gearless type wind turbine is developed. The wind turbine is designed, manufactured and tested by GE regulation and obtained the design certificate by GL. And the performance test is being performed at the demonstration site now. This paper presents the history of development and performance test for 750kW gearless type wind turbine.

  • PDF

A Study on the Characteristic Analysis of a Grid-connected Induction Generator for Wind Power Systems on Simulink (Simulink에서 계통연계 유도형 풍력발전시스템의 특성해석에 대한 연구)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Moon-Seok;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.184.3-184.3
    • /
    • 2010
  • This study suggests a modeling of grid-connected wind turbine generation systems and performs simulation according to increase/decrease of real wind speed. MATLAB & SIMULINK implemented modeling of grid-connected wind turbine generation system. Terminal voltage, grid voltage, and active/reactive power shall be observed following the performance of simulation.

  • PDF

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Loss Minimization of DFIG for Wind Power Generation

  • Abo-Khalil, Ahmed G.;Park, Hong-Geuk;Lee, Dong-Choon;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.315-317
    • /
    • 2007
  • This paper proposes a loss minimization algorithm for doubly-fed induction generator (DFIG) by controlling the stator reactive power. The proposed strategy directly controls the rotor current to achieve the operating point of minimum generator loss and maximum power point tracking. The maximum power is obtained by tracking the q-axis rotor current with generator speed variation and the minimum generator loss is achieved by controlling the d-axis rotor current. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Dynamic Characteristic Analysis of a Wind Turbine Depending on Varying Operational Conditions (작동 조건 변화에 따른 풍력발전 시스템의 동적 특성 해석)

  • Nam, Yoon-Su;Yoon, Tai-Jun;Yoo, Neung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • A design methodology for control strategy and control structure gives a direct impact on wind turbine's performance and life cycle. A baseline control law which is a variable rotor speed and variable pitch control strategy is introduced, and a mathematic performance model of a wind turbine dynamics is derived. By using a numeric optimization algorithm, the steady state operating conditions of wind turbines are identified. Because aerodynamic interaction of winds with rotor blades is basically nonlinear, a linearization procedure is applied to analyze wind turbine dynamic variations for whole operating conditions. It turns out the wind turbine dynamics vary much depending on its operating condition.