Journal of Korean Society for Atmospheric Environment
/
v.26
no.6
/
pp.666-682
/
2010
The forecasting system for Today's and Tomorrow's PM10 was developed based on the statistical model and the forecasting was performed at 9 AM to predict Today's 24 hour average PM10 concentration and at 5 PM to predict Tomorrow's 24 hour average PM10. The Today's forecasting model was operated based on measured air quality and meteorological data while Tomorrow's model was run by monitored data as well as the meteorological data calculated from the weather forecasting model such as MM5 (Mesoscale Meteorological Model version 5). The observed air quality data at ambient air quality monitoring stations as well as measured and forecasted meteorological data were reviewed to find the relationship with target PM10 concentrations by the regression analysis. The PM concentration, wind speed, precipitation rate, mixing height and dew-point deficit temperature were major variables to determine the level of PM10 and the wind direction at 500 hpa height was also a good indicator to identify the influence of long-range transport from other countries. The neural network, regression model, and decision tree method were used as the forecasting models to predict the class of a comprehensive air quality index and the final forecasting index was determined by the most frequent index among the three model's predicted indexes. The accuracy, false alarm rate, and probability of detection in Tomorrow's model were 72.4%, 0.0%, and 42.9% while those in Today's model were 80.8%, 12.5%, and 77.8%, respectively. The statistical model had the limitation to predict the rapid changing PM10 concentration by long-range transport from the outside of Korea and in this case the chemical transport model would be an alternative method.
An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.
Precipitation and no-precipitation events under the influence of the Siberian high pressure system in Yeondong region, were analysed and classified as four types [obvious precipitation event (OP) type, obvious no-precipitation event (ON) type, ambiguous precipitation event (AP) type and ambiguous no-precipitation event (AN) type], according to the easiness in determining whether to have precipitation or not in Yeongdong region, to help in improving the forecast skill. Concerning the synoptic pressure pattern, for OP type, the ridge of Siberian high extends from Lake Baikal toward Northeast China, and there is a northerly wind upstream of the northern mountain complex (located near the Korean-Chinese border). On the other hand, for ON type, the ridge of Siberian high extends southeastward from Lake Baikal, and there is a westerly wind upstream of the northern mountain complex. The pressure pattern of AP type was similar to the OP type and that of AN type was also similar to ON type. Thus it was difficult to differentiate AP type and OP type and AN type and ON type based on the synoptic pressure pattern only. The four types were determined by U (wind speed normal to the Taebaek mountains) and Froude number (FN). That is, for OP type, average FN and U at Yeongdong coast are ~2.0 and ${\sim}6m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.1m\;s^{-1}$, respectively. On the contrary, for ON type, average FN and U at Yeongdong coast are 0.0 and $0.2m\;s^{-1}$, and those at Yeongseo region are ~1.0 and ${\sim}4m\;s^{-1}$, respectively. For AP type, average FN and U at Yeongdong coast are ~1.0 and ${\sim}4m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.2m\;s^{-1}$, whereas for AN type, average FN and U at Yeongdong coast are 0.1 and $0.6m\;s^{-1}$ and those at Yeongseo region are ~1.0 and ${\sim}3m\;s^{-1}$, respectively. Based on the result, a schematic diagram for each type was suggested.
Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.
Journal of the Korean Society of Marine Environment & Safety
/
v.22
no.4
/
pp.344-353
/
2016
The cause of abnormal tidal residuals was examined by analyzing sea levels, sea surface atmospheric pressures, winds at ten tide stations, and current, measured at the coast of the Yellow Sea from the night of November $24^{th}$ to the morning of the $25^{th}$ in 2013, along with weather chart. Additionally, the cross-correlations among the measured data were also examined. The 'abnormal tidal residuals' mentioned in this study refer to differences between maximum and minium tidal residuals. The largest abnormal tidal residual was identified to be a difference of 176 cm occurring over 4 hours and 1 minute at YeongJongDo (YJD) with a maximum tidal residual of 111 cm and minimum of -65 cm. The smallest abnormal tidal residual was 68 cm at MoSeulPo (MSP) during 8 hours 52 minutes. The cause of these abnormal tidal residuals was not a meteo-tsunami generated by an atmospheric pressure jump but wind generated by the pressure patterns. The flow speed due to these abnormal tidal residuals as measured at ten tide stations was not negligible, representing 16 ~ 41 % of the annual average ebb current speed. From the cross correlation among the tidal residuals, winds, and tidal residual currents, we learned the northern flow, due to southerly winds, raised the sea level at Incheon when a low pressure center located on the left side of the Korean Peninsula. After passing the Korean Peninsula, a southern flow due to northerly winds decreased the sea level.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.89-92
/
2015
In this paper, we propose a method to reduce the fire suppression time. Our suggestions can secure a safe area according to the diffusion path and speed of the fire, forest fire prediction minimize casualties and property damage forests. The existing path prediction method wildfire spread predict the wildfire spread model and speed through topography, weather, fuel factor and the image information. In this case, however, occur to control a large mountain huge costs. Also Focus on the diffusion model predictions and the path identified by the problem arises that insufficient efforts to ensure the safe area. In this paper, we estimate the moving direction and speed of fire at a lower cost, and proposes an algorithm to ensure the safety zone for fire suppression. The proposed algorithm is a technique to analyze the attribute information that temperature, wind, smoke measured over time. According to our algorithm forecast wildfire moving direction and ensure the safety zone. By analyzing the moving speed and the moving direction of the simulated fire in a given environment is expected to be able to quickly reduce the damage to the forest fire fighters.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.12
/
pp.2348-2354
/
2016
In recent days, IoT (Internet of Things) technology has been widely used in the field of agriculture, which enables the collection of environmental data and biometric data into the database. The availability of big data on agriculture results in the increase of the machine learning based analysis. Through the analysis, it is possible to forecast agricultural production and the diseases of livestock, thus helping the efficient decision making in the management of smart farm. Herein, we use the environmental and biometric data of Smart Pig farm to derive the accurate relationship model between the environmental information and the daily weight increase of swine and verify the accuracy of the derived model. To this end, we applied the M5P tree algorithm of machine learning which reveals that the wind speed is the major factor which affects the daily weight increase of swine.
Korean Journal of Agricultural and Forest Meteorology
/
v.3
no.3
/
pp.156-162
/
2001
In order to monitor local climatic information, twelve automated weather stations (AWS) were installed in alpine area by the Alpine Agricultural Experiment Station, Rural Development Administration (RDA), at the field of major crop located in around highland area, and collected data from 1993 to 2000. Hourly measurements of air and soil temperature (underground 10 cm,20 cm), relative humidity, wind speed and direction, precipitation, solar radiation and leaf wetness were automatically performed and the data could be collected through a public phone line. Datalogger was selected as CR10X (Campbell scientific, LTD, USA) out of consideration for sensers' compatibility, economics, endurance and conveniences. All AWS in alpine area were combined for net work and daily climatic data were analyzed in text and graphic file by program (Chumsungdae, LTD) on 1 km $\times$ 1 km grid tell basis. In this analysis system, important multi-functionalities, monitoring and analysis of local climatic information in alpine area was emphasized. The first objective was to obtain the output of a real time data from AWS. Secondly, daily climatic normals for each grid tell were calculated from geo-statistical relationships based on the climatic records of existing weather stations as well as their topographical informations. On 1 km $\times$ 1 km grid cell basis, real time climatic data from the automated weather stations and daily climatic normals were analyzed and graphed. In the future, if several simulation models were developed and connected with this system it would be possible to precisely forecast crop growth and yield or plant disease and pest by using climatic information in alpine area.
A forest fire was one of the huge disasters and damaged human lifes and a properties. Therefore, many countries operated forest fire forecasting systems which developed from forest fire records, weather data, fuel models and etc. And many countries also estimated future state of forest fire using a long-term climate forecasting like GCMs and prepared resources for future huge disasters. In this study, we analyzed relationships between forest fire occurrence and meteorological factors (the minimum temperature ($^{\circ}C$), the relative humidity (%), the precipitation (mm), the duration of sunshine (hour) and etc.) for developing a estimating tools, which could forecast forest fire regime under future climate change condition. Results showed that forest fires in this area were mainly occurred when the maximum temperature was $10{\sim}200^{\circ}C$, when the relative humidity was 40~60%, and when the average wind speed was under 2m/s. And forest fires mainly occurred at 2~3 day after rainfall.
Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.