• Title/Summary/Keyword: wind speed forecast

Search Result 108, Processing Time 0.031 seconds

Hourly Average Wind Speed Simulation and Forecast Based on ARMA Model in Jeju Island, Korea

  • Do, Duy-Phuong N.;Lee, Yeonchan;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1548-1555
    • /
    • 2016
  • This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive - moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Improving Forecast Accuracy of Wind Speed Using Wavelet Transform and Neural Networks

  • Ramesh Babu, N.;Arulmozhivarman, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.559-564
    • /
    • 2013
  • In this paper a new hybrid forecast method composed of wavelet transform and neural network is proposed to forecast the wind speed more accurately. In the field of wind energy research, accurate forecast of wind speed is a challenging task. This will influence the power system scheduling and the dynamic control of wind turbine. The wind data used here is measured at 15 minute time intervals. The performance is evaluated based on the metrics, namely, mean square error, mean absolute error, sum squared error of the proposed model and compared with the back propagation model. Simulation studies are carried out and it is reported that the proposed model outperforms the compared model based on the metrics used and conclusions were drawn appropriately.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm (수치 예측 알고리즘 기반의 풍속 예보 모델 학습)

  • Kim, Se-Young;Kim, Jeong-Min;Ryu, Kwang-Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.19-27
    • /
    • 2015
  • Technologies of wind power generation for development of alternative energy technology have been accumulated over the past 20 years. Wind power generation is environmentally friendly and economical because it uses the wind blowing in nature as energy resource. In order to operate wind power generation efficiently, it is necessary to accurately predict wind speed changing every moment in nature. It is important not only averagely how well to predict wind speed but also to minimize the largest absolute error between real value and prediction value of wind speed. In terms of generation operating plan, minimizing the largest absolute error plays an important role for building flexible generation operating plan because the difference between predicting power and real power causes economic loss. In this paper, we propose a method of wind speed prediction using numeric prediction algorithm-based wind speed forecast model made to analyze the wind speed forecast given by the Meteorological Administration and pattern value for considering seasonal property of wind speed as well as changing trend of past wind speed. The wind speed forecast given by the Meteorological Administration is the forecast in respect to comparatively wide area including wind generation farm. But it contributes considerably to make accuracy of wind speed prediction high. Also, the experimental results demonstrate that as the rate of wind is analyzed in more detail, the greater accuracy will be obtained.

Evaluation of Surface Wind Forecast over the Gangwon Province using the Mesoscale WRF Model (중규모 수치모델 WRF를 이용한 강원 지방 하층 풍속 예측 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Lim, Yoon-Jin;Choi, Byoung-Choel
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.158-170
    • /
    • 2015
  • This study evaluates the wind speed forecast near the surface layer using the Weather Research Forecasting with Large Eddy Simulation (WRF-LES) model in order to compare the planetary boundary layer (PBL) parameterization with the LES model in terms of different spatial resolution. A numerical simulation is conducted with 1-km and 333-m horizontal resolution over the Gangwon Province including complex mountains and coastal region. The numerical experiments with 1-km and 333-m horizontal resolution employ PBL parameterization and LES, respectively. The wind speed forecast in mountainous region shows a better forecast performance in 333-m experiment than in 1-km, while wind speed in coastal region is similar to the observation in 1-km spatial resolution experiment. Therefore, LES experiment, which directly simulates the turbulence process near the surface layer, contributes to more accurate forecast of surface wind speed in mountainous regions.

The Analysis of Meterological Environment over Jeju Moseulpo Region for HALE UAV (장기체공무인기를 위한 제주도 모슬포 지역의 기상환경 분석)

  • Cho, Young-Jun;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Choi, Reno K.Y.;Cho, Chun-Ho;Kim, Su-Bo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.469-477
    • /
    • 2015
  • In this study, the characteristics of main wind direction, vertical temperature and wind speed profile near the Moseulpo airfield for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) is investigated. The results are summarized as follows, main wind direction is governed by air mass according to season and local wind such as land-sea breeze. The directions of landing and take-off of HALE UAV will be selected as the south-east direction in June ~ August, north-west direction in October ~ March, and south-east direction at daytime in April ~ May, September. Annual variation of temperature at 100 hPa showed that temperature in summer season is lower than winter season. On the other hands, wind speed at 250 hPa in winter season is higher than summer season. The threshold values of temperature and wind speed for HALE UAV flight are $-75^{\circ}C$ and $90ms^{-1}$, which were determined by 5 % frequency value($1.96{\sigma}$), respectively.

SHORT-TERM WIND SPEED FORECAST BASED ON ARMA MODEL IN JEJU ISLAND (제주도에서의 ARMA 모델을 기반으로한 단기 풍속 예측)

  • Do, Duy Phuong N.;Lim, Jintaek;Lee, Yeonchan;Oh, Ungjin;Choi, Jaeseok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.329-330
    • /
    • 2015
  • From the results of previous my paper [10] in 2015 year of economic and electrical power storage research conference in Naju, this paper describes an application of autoregressive and moving average (ARMA) model to forecast hourly average wind speed (HAWS) in Jeju island. The models are used to build up short-term forecast of hourly average wind speed by the weighted sum of previous wind speed values.

  • PDF

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.