• Title/Summary/Keyword: wind rotor

Search Result 534, Processing Time 0.024 seconds

Loss Minimization of DFIG for Wind Power Generation

  • Abo-Khalil, Ahmed G.;Park, Hong-Geuk;Lee, Dong-Choon;Lee, Se-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.315-317
    • /
    • 2007
  • This paper proposes a loss minimization algorithm for doubly-fed induction generator (DFIG) by controlling the stator reactive power. The proposed strategy directly controls the rotor current to achieve the operating point of minimum generator loss and maximum power point tracking. The maximum power is obtained by tracking the q-axis rotor current with generator speed variation and the minimum generator loss is achieved by controlling the d-axis rotor current. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Design of Mach-Scale Blade for LCH Main Rotor Wind Tunnel Test (소형민수헬기 주로터 풍동시험을 위한 마하 스케일 블레이드 설계)

  • Kee, YoungJung;Park, JoongYong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2018
  • In this study, the internal structural design, dynamic characteristics and load analyses of the small scaled rotor blade required for LCH(Light Civil Helicopter) main rotor wind tunnel test were carried out. The test is performed to evaluate the aerodynamic performance and noise characteristics of the LCH main rotor system. Therefore, the Mach-scale technique was appled to design the small scaled blade to simulate the equivalent aerodynamic characteristics as the full scale rotor system. It is necessary to increase the rotor speed to maintain the same blade tip speed as the full scale blade. In addition, the blade weight, section stiffness, and natural frequency were scaled according to the Mach-type scaling factor(${\lambda}$). For the design of skin, spar, torsion box, which are the main components of the blade, carbon and glass fiber composite materials were adopted, and composite materials are prepreg types that can be supplied domestically. The KSec2D program was used to evaluate the section stiffness of the blade. Also, structural loads and dynamic characteristics of the Mach scale blade were investigated through the comprehensive rotorcraft analysis program CAMRADII.

Tilt Rotor-Wing Concept for Multi-Purpose VTOL UAV

  • Hwang, Soo-Jung;Kim, Yu-Shin;Lee, Myeong-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.87-94
    • /
    • 2007
  • Tilt rotor-wing concept to show enhanced performance in low speed mission is presented. Three types of stud wings on the existing tilt rotor configuration are suggested and their characteristics are compared. Aerodynamic analysis indicates that the stud wing concept gives significant performance improvement on the endurance and range in the low speed regime when compared with the tilt rotor. Penalties of the stud wing are discussed from the perspectives of conversion corridor, structural weight, configuration design, and cross wind stability. This study concludes that the advantage of the stud wing in general UAV mission performance is so significant as to surpass the penalties in other perspectives investigated.

A study on wind load characteristics of wind turbines (풍력발전기의 풍하중특성에 관한 연구)

  • Kim, Jung-Su;Park, Noh-Gill;Kim, Young-Duk;Kim, Su-Hyub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

Study for the Power Characteristic of NREL Phase VI Blade considering Wind Shear (Wind Shear를 고려한 NREL Phase VI 블레이드의 출력특성연구)

  • Park, Sangjun;Lee, Kyungseh;Kim, Youngchan;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • As rotor blade of a wind turbine becomes larger to satisfy the economic efficiency for offshore wind farm, the numerical analysis considering wind profile is getting emphasized. In this paper, the study for the power characteristic of a wind turbine is carried out using NREL phase VI wind turbine applied wind profile. The experimental data of NASA Ames wind tunnel for inflow velocity 7m/s is used and the numerical result is obtained by using CFD commercial solver(FLUENT).

  • PDF

Stepwise Inertial Control of a Doubly-Fed Induction Generator to Prevent a Second Frequency Dip

  • Kang, Mose;Lee, Jinsik;Hur, Kyeon;Park, Sang Ho;Choy, Youngdo;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2221-2227
    • /
    • 2015
  • To arrest a frequency nadir, a stepwise inertial control (SIC) scheme generates a constant active power reference signal of a wind turbine generator (WTG) immediately after a disturbance and maintains it for the predetermined time. From that point, however, the reference of a WTG abruptly decreases to restore the rotor speed for the predefined period. The abrupt decrease of WTG output power will inevitably cause a second frequency dip. In this paper, we propose a modified SIC scheme of a doubly-fed induction generator (DFIG) that can prevent a second frequency dip. A reference value of the modified SIC scheme consists of a reference for the maximum power point tracking control and a constant value. The former is set to be proportional to the cube of the rotor speed; the latter is determined so that the rotor speed does not reach the minimum operating limit by considering the mechanical power curve of a DFIG. The performance of the modified SIC was investigated for a 100 MW aggregated DFIG-based wind power plant under various wind conditions using an EMTP-RV simulator. The results show that the proposed SIC scheme significantly increases the frequency nadir without causing a second frequency dip.

A Study on Experimental Test of a Small Scale Hingeless Rotor (축소형 무힌지 로터 시험에 관한 연구)

  • Kim, Joune-Ho;Song, Keun-Woong;Joo, Gene;Suk, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1599-1606
    • /
    • 2011
  • It is possible to study the load characteristics of full-scale hingeless rotor with the changing of physical smallscaled configurations such as rectangular and paddle blades, and metal and composite hubs. In this study, a static test, and a ground and wind-tunnel test were carried out using small-scale rotor models. The static test was carried out to confirm structural stiffness, characteristics of inertia, natural frequency, and damping ratio of rotors, and the ground and wind-tunnel test was carried out to confirm the stability and aerodynamic characteristics under hovering and forward flight conditions. According to the test results, the vertical load in the case of a combination of a small composite hub with paddle blades was higher than that in the case of a metal hub with paddle blades at same condition. Further, it was confirmed that the restraint of the combination of composite hub can be more flexible than the metal hub for the motion of paddle blades.

Mechanical Design of a 750 kW Direct-drive Wind Turbine Generator System (750kW급 풍력터빈발전기의 기계설계)

  • Sohn, Y. U.;Son, J. B.;Park, I. S.;Kim, Y. C.;Kim, K. R.;Chung, C. W.;Chun, Ch. H.;Ryu, J. Y.;Park, J, I.;Byun, C. J,;Kim, D. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.379-384
    • /
    • 2004
  • A prototype of 750 kW direct-drive wind turbine generator system, KBP-750D is under development in Korea. For the gearless, direct-drive prototype a synchronous generator with permanent magnets has been developed. The upwind 3-blade type machine employs variable speed and pitch control. The operating ranges of wind and rotor speed are 3 to 25 m/s and 9 to 25 rpm, respectively. The tip speed ratio of rotor blade is 7.5, designed for power coefficient 0.47, The blade pitch and torque are controlled with the predefined torque-speed curve according to the conditions of wind and public electric grid. This paper describes the outlines of primary components of KBP-750D.

  • PDF

A Study on the 1MW Horizontal Axis Wind Turbine Rotor Design and 3D Numerical Analysis by CFD (CFD에 의한 1MW 수평축 풍력발전용 로터 설계 및 해석에 관한 연구)

  • Kim, B. S.;Kim, Y. T.;NAM, C. D.;Kim, J. G.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.396-401
    • /
    • 2004
  • In this paper, a 1MW HAWT(FIL-1000) rotor blade has been designed by BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. Also, a 3-D flow and performance analysis on the FIL-1000 rotor blade has been carried out by using the 3-D Navier-Stokes commercial solver (CFX-5.7) to provide more efficient design techniques to the large-scale HAWT engineers. The rated power and itsapproaching wind velocity at design point (TSR=7.5) are 1MW and 9.99m/s respectively. The rotor diameter is 54.5m and the rotating speed is 26.28rpm. Airfoils such as FFA W-301, DU91-W-250, DU93-W-210, NACA 63418, NACA 63415 consist of the rotor blade from hub to tip. Recent CFX version, 5.7 was adopted to simulate 3-D flow field and to analyze the performance characteristics of the rotor blade. Entire mesh node number is about 730,000 and it is generated by ICEM-CFD to achieve better mesh quality The predicted maximum power occurringat the design tip speed ratio is 931.45kW. Approaching to the root, the inflow angle becomes large, which causesthe blade to be stalled in the region. Therefore, k-$\omega$ SST turbulence model was used to predict the quantitative flow information more accurately. Application of commercial CFD code to optimum blade design and performance analysis was proved to be more effective environment to HAWT blade designers.

  • PDF

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.