• Title/Summary/Keyword: wind resource assessment

Search Result 86, Processing Time 0.029 seconds

Validation of Calibrated Wind Data Sector including Shadow Effects of a Meteorological Mast Using WindSim (WindSim을 이용한 풍황탑 차폐오차 구간의 보정치 검증)

  • Park, Kun-Sung;Ryu, Ki-Whan;Kim, Hyun-Goo
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.34-39
    • /
    • 2013
  • The wind resource assessment for measured wind data over 1 year by using the meteorological mast should be a prerequisite for business feasibility of the wind farm development. Even though the direction of boom mounting the wind vane and anemometer is carefully engineered to escape the interference of wakes generated from the met-mast structures, the shadow effect is not completely avoided due to seasonal winds in the Korean Peninsula. The shadow effect should be properly calibrated because it is able to distort the wind resources. In this study a calibration method is introduced for the measured wind data at Julpo in Jeonbuk Province. Each sectoral terrain conditions along the selected wind direction nearby the met-mast is investigated, and the distorted wind data due to shadow effects can be calibrated effectively. The correction factor is adopted for quantitative calibration by carrying out the WindSim analysis.

Site Calibration for the Wind Turbine Performance Evaluation

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2250-2257
    • /
    • 2004
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the TaeKwanRyung test site are presented using three-month wind data from a reference meteorological mast and the other mast temporarily installed at the site of wind turbine. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

Assessment of Offshore Wind Resources Within Japan's EEZ Using QuikSCAT Data

  • Ohsawa, Teruo;Tanaka, Masahiro;Shimada, Susumu;Tsubouchi, Nobuki;Kozai, Katsutoshi
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.841-845
    • /
    • 2009
  • In this paper, offshore wind resources within the Japan's EEZ (Exclusive Economic Zone) are assessed using wind speed data from the microwave scatterometer SeaWinds onboard QuikSCAT. At first, from the 10m-height wind speed from QuikSCAT, 60 m-height wind speed is estimated by using an empirical equation for height correction. Based on the 60 m-height wind speeds, annual energy Production is calculated under an assumption of installing 2 MW wind turbines every $0.64km^2$. The annual energy production is then accumulated for the entire Japan's territorial waters and EEZ ($4.47{\times}10^6km^2$). As a result, it is shown that the total energy Production is estimated to be $4.86{\times}10^4$ TWh/yr. This offshore wind energy Potential within the EEZ is approximately 50 times higher than the actual annual electricity production in Japan.

An Implementation of Real-time Measurement and Assessment System for Power Quality Characteristics of Grid Connected Wind Turbines (계통연계 풍력발전기의 전력품질 평가를 위한 IEC 61400-21 표준 실시간 계측 장치 구현)

  • Lee, Jong-Joo;Kim, Dong-Joon;Moon, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1560-1565
    • /
    • 2010
  • The renewable resource are getting more attentions with increased concerns on the depletion of fossil fuels and several environmental issues like emission problem. Wind power is a representative option among several renewable sources and the generation capacity using wind power is being increased. However, the wind generation is so volatile on its output characteristic, so it is required to assess the grid impact of wind power generation by measuring the fluctuation effect more precisely. This paper proposes the method for measuring the generation output according to IEC 61400-21(Measurement and assessment of power quality characteristics of grid connected wind turbines) to assess the power quality of wind turbine generation. In addition, it shows an application case to a small-scale wind power generator. In the case study, it suggests a structure design of the proposed measurement instrument both on hardware and software aspects, which is composed of a remote monitoring & data analysis program and an FPGA based real-time signal processing device.

A case study of wind park development and commercial operation (풍력발전단지 조성 및 운영 사레 연구)

  • Byun, Hyo-In;Cho, Joo-Suk;Ryu, Ji-Yoon;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.292-295
    • /
    • 2006
  • 2005년 말 현재, 국내의 상업운전 중인 풍력발전기는 93.5MW(KPX 2005)에 불과하여 민간의 풍력에너지 개발 참여를 위한 사업타당성 조사에서 상업운전에 이르는 풍력발전단지 개발절차에 대한 사례 연구가 미비하다. 최근 신재생에너지 보급을 위한 정부의 강력한 의지와 맞물려 민간의 대규모 풍력발전단지 개발 계획이 속속 진행되고 있는 여건에서, 국내 최초의 대단위 상업용 풍력발전단지인 영덕풍력발전의 개발 및 운영사례를 통해 국내 풍력발전단지 개발 시 고려사항과 발생 가능한 문제점 및 해결방안을 제시한다.

  • PDF

Including Thermal Effects in CFD Wind Flow Simulations

  • Meissner, Catherine;Gravdahl, Arne Reidar;Steensen, Birthe
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.833-839
    • /
    • 2009
  • The calculation of the wind field for resource assessment is done by using CFD Reynolds-Averaged Navier-Stokes simulations performed with the commercial software WindSim. A new interface has been created to use mesoscale simulation data from a meteorological model as driving data for the simulations. This method makes it necessary to take into account thermal effects on the wind field to exploit the full potential of this method. The procedure for considering thermal effects in CFD wind field simulations as well as the impact of thermal effects on the wind field simulations is presented. Simulations for non-neutral atmospheric conditions with the developed method are consistent with expected behavior and show an improvement of simulation results compared with observations.

Review on The Proposed Offshore Wind Farm Projects Using National Wind Atlas and National Geographic Information (국가바람지도 및 국가지리정보에 의한 국내 해상풍력단지 개발계획의 비교분석)

  • Kim, Hyun-Goo;Hwang, Hyo-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.44-55
    • /
    • 2010
  • The proposed offshore wind farm projects, i.e., Mooudo offshore, Yeonggwang-Gochang offshore, Saemangeum offshore, Imjado offshore and Gadeokdo-Dadeapo offshore, were compared and analyzed using the Korea National Wind Mapand Wind Farm Suitability Assessment System developed by the Korea Institute of Energy Research. The suitability of the proposed areas was comprehensively assessed using geographic, economic constraints, wave condition and wind resource factors, but the focus of this paper was on the geographic constraints and wave conditions. Imjado had several geographical constraints, despite having a good wind power density, while Saemangeum had a relatively low wave height, shallow water depth, close substation and slow tidal current. It is anticipating that the present comparison and analysis could be used as reference guidelines when selecting and preparing the design of large-scale offshore wind farm in the near future.

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF