• Title/Summary/Keyword: wind properties

Search Result 569, Processing Time 0.024 seconds

Wind design spectra for generalisation

  • Martinez-Vazquez, P
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.155-163
    • /
    • 2020
  • Previous research has shown that wind acceleration components produce a signal that can vibrate single-degree of-freedom oscillators, whose dynamic responses enable to configure design spectra for structures subject to wind. These wind design spectra present an alternative method for evaluating the dynamic response of structures and are a suitable tool for running modal analyses. Here, a generalised method for producing wind design spectra is proposed. The method consists of scaling existing spectra to adjust to a wider range of building properties and terrain conditions. The modelling technique is tested on a benchmark building to prove that its results are consistent with experimental evidence reported in the past.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part2 (풍력터빈의 구조특성 평가에 관한 연구-Part2)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.

An Experimental Study on Properties of Seabed Unconsolidated Sediment for Wind Power System Construction (해상풍력발전단지 건설 시 해양미고결지반 물성 파악을 위한 실험 연구)

  • Yoo, Hyun-Jong;Lim, Jong-Se;Shin, Sung-Ryul;Jang, Won-Yil;Yoon, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.365-373
    • /
    • 2008
  • When the wind power system is planned to construct, it is important to understand the physical, chemical and mechanical properties of sediment. Especially, If it is the seabed unconsolidated sediment, we need to experiment on sediment through seabed unconsolidated sediment test and sediment survey. Because the sediment's properties are different as its formation, accumulation and load, unconsolidated sediment is difficult to be expected to its behavior. So we can estimate suitability for mechanical material and decrease the uncertainty through seabed unconsolidated sediment test. Seabed unconsolidated sediment test can be experimented in laboratory or in-situ as purpose, in-situ condition, economic problem. In this study, we sampled the seabed unconsolidated sediment at offshore around Korea Maritime University and measured properties of sediment through the laboratory test, showed the effect on physical properties of seabed unconsolidated sediment when the wind power system is planned to construction.

Aerodynamic admittances of bridge deck sections: Issues and wind field dependence

  • Zhang, Zhitian;Zhang, Weifeng;Ge, Yaojun
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.283-299
    • /
    • 2017
  • Two types of aerodynamic admittance function (AAF) that have been adopted in bridge aerodynamics are addressed. The first type is based on a group of supposed relations between flutter derivatives and AAFs. In so doing, the aero-elastic properties of a section could be used to determine AAFs. It is found that the supposed relations hold only for cases when the gust frequencies are within a very low range. Predominant frequencies of long-span bridges are, however, far away from this range. In this sense, the AAFs determined this way are of little practical significance. Another type of AAFs is based on the relation between the Theodorsen circulation function and the Sears function, which holds for thin airfoil theories. It is found, however, that an obvious illogicality exists in this methodology either. In this article, a viewpoint is put forward that AAFs of bluff bridge deck sections are inherently dependent on oncoming turbulent properties. This kind of dependence is investigated with a thin plate and a double-girder bluff section via computational fluid dynamics method. Two types of wind fluctuations are used for identification of AAFs. One is turbulent wind flow while the other is harmonic. The numerical results indicate that AAFs of the thin plate agree well with the Sears AAF, and show no obvious dependence on the oncoming wind fields. In contrast, for the case of bluff double-girder section, AAFs identified from the turbulent and harmonic flows of different amplitudes differ among each other, exhibiting obvious dependence on the oncoming wind field properties.

A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Zhao, L.;Tamura, Y.
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.433-457
    • /
    • 2017
  • As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.

Vibrations of wind-turbines considering soil-structure interaction

  • Adhikari, S.;Bhattacharya, S.
    • Wind and Structures
    • /
    • v.14 no.2
    • /
    • pp.85-112
    • /
    • 2011
  • Wind turbine structures are long slender columns with a rotor and blade assembly placed on the top. These slender structures vibrate due to dynamic environmental forces and its own dynamics. Analysis of the dynamic behavior of wind turbines is fundamental to the stability, performance, operation and safety of these systems. In this paper a simplied approach is outlined for free vibration analysis of these long, slender structures taking the soil-structure interaction into account. The analytical method is based on an Euler-Bernoulli beam-column with elastic end supports. The elastic end-supports are considered to model the flexible nature of the interaction of these systems with soil. A closed-form approximate expression has been derived for the first natural frequency of the system. This new expression is a function of geometric and elastic properties of wind turbine tower and properties of the foundation including soil. The proposed simple expression has been independently validated using an exact numerical method, laboratory based experimental measurement and field measurement of a real wind turbine structure. The results obtained in the paper shows that the proposed expression can be used for a quick assessment of the fundamental frequency of a wind turbine taking the soil-structure interaction into account.

The slenderness effect on wind response of industrial reinforced concrete chimneys

  • Karaca, Zeki;Turkeli, Erdem
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.281-294
    • /
    • 2014
  • There are several parameters affecting the response of industrial reinforced concrete (RC) chimneys, i.e., the severity of wind and earthquake loads acting to the structure, structural properties such as height and cross section of the chimney, the slenderness property of the structure etc. One of the most important parameter that should be considered while understanding the wind response of industrial RC chimneys is slenderness property. Although there is no certain definition for slenderness effect on these structures, some standards like ASCE-7 define slenderness from different aspects of the structural properties. In the first part of this study, general information about the definition of slenderness in the well-known standards and ten selected industrial RC chimneys are given. In the second part of the study, brief information about wind load standards that are used for calculating wind loads namely ACI 307/98, CICIND 2001, DIN 1056, TS 498 and Eurocode 1 is given. In the third part of the study, calculated wind loads for selected chimneys are represented. In the fourth part of this study, the internal forces obtained from load combinations that are applied to chimneys and some graphs presenting the effect of slenderness on chimneys are given. In the last part of the study, a conclusion and discussion part is taking place.

An Experimental Study on 3-Dimension Aerodynamic Properties of Composite Cable Stayed Bridge (합성형 사장교의 3차원 공기역학적 특성에 대한 실험적 연구)

  • Min, In Ki;Chae, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.741-750
    • /
    • 2008
  • The aim of this study was to analyze the aerodynamic properties of the composite cable-stayed bridge by conducting three-dimensional wind tunnel tests. Focusing on the improved section of the bridge in the two-dimensional wind tunnel tests, the bridge's aerodynamic stability was estimated based on the angles of attack and the wind angles. The aerodynamic properties of vertical galloping, torsion galloping,and torsion flutter were also estimated based on the design wind velocity, and because much of the cable-stayed bridge was constructed using FCM, it was not sufficiently stiff during the bridge's construction. Therefore,the experience progressed by stages: from the full stage to the tow stage, and until the bridge became a single tower. Since the original plane was designed to be a steel box girder, the aerodynamic properties of the steel-box-type and composite-type girder could be compared. The results of this study can be utilized as basic data regarding the aerodynamic properties of medium-length and short composite cable-stayed bridges.