• Title/Summary/Keyword: wind profile

Search Result 278, Processing Time 0.025 seconds

Comparison of Turbulence Models in Homogeneous Channel Flows (등밀도 수로흐름에서 의 난류모형 비교)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.13-26
    • /
    • 1995
  • In this paper three turbulence models including two-equation model by Blumberg and Mellor (1987), one-equation model with mixing length formula of Blackadar's (1962), and zero-equation model of Prandtl's (1925) were compared in homogeneous, unstratified channel flows. Steady flows which a steep-sided trapezoidal trench with uniform discharge, tidal flow and steady wind-driven flow in finite channels are considered in detail. Steady flows in a trench and tidal flows in a finite channel were reproduced fairly accurately and there was virtually no difference among results of three turbulence models. However, In case of steady wind-driven flow only two-equation model reproduced the important features of experimental data. the other two models underestimated the surface velocity. In tidal and wind-driven flows with negligibly small adjective and diffusive effects, the two-equation model gives rise to parabolic profile of eddy viscosity with maximum at the mid0depth, and the one and zero equation model based on Blackadar formula linear profile with maximum at the surface.

  • PDF

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

Accretion Flow and Raman-scattered O VI and C II Features in the Symbiotic Nova RR Telescopii

  • Heo, Jeong-Eun;Lee, Hee-Won;Angeloni, Rodolfo;Palma, Tali;Di Mille, Francesco
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2018
  • RR Tel is an interacting binary system in which a hot white dwarf (WD) accretes matter from a Mira variable via gravitational capture of the stellar wind. We present a high-resolution optical spectrum of RR Tel obtained with MIKE at Magellan-Clay telescope, Chile. We find broad emission features at 6825, 7082, 7023, and $7053{\AA}$, which are formed through Raman scattering of far-UV O VI ${\lambda}{\lambda}$ 1032 and $1038{\AA}$, C II ${\lambda}{\lambda}$ 1036 and $1037{\AA}$ with atomic hydrogen. Raman O VI 6825 and 7082 features are characterized by double-peaked profiles indicative of an accretion flow with a characteristic speed ~ 30km/s, whereas the Raman C II features exhibit a single Gaussian profile with FWHM ${\sim}10{\AA}$. Monte Carlo simulations for Raman O VI and C II are performed by assuming that the emission nebula around the WD consists of the inner O VI disk with a representative scale of 1 AU and the outer part with C II sphere. The best fit for Raman profiles is obtained with an asymmetric matter distribution of the O VI disk, the mass loss rate of the cool companion ${\dot{M}}{\sim}2{\times}10^{-6}M_{{\odot}/yr}$ and the wind terminal velocity v~10 km/s. We also find O VI doublet at 3811 and $3834{\AA}$, which are blended with other emission lines. Our profile decomposition shows that the O VI ${\lambda}{\lambda}$ 3811, 3834 doublet have a single Gaussian profile with a width ~ 25 km/s. A comparison of the restored fluxes of C II ${\lambda}{\lambda}$ 1036 and 1037 from Raman C II features with the observed C II ${\lambda}1335$ leads to an estimate of a lower bound of N(CII) > $9.87{\times}10^{13}cm^{-2}$ toward RR Tel, which appears consistent with the presumed distance D ~ 2.6 kpc.

  • PDF

A Case Study of WRF Simulation for Surface Maximum Wind Speed Estimation When the Typhoon Attack : Typhoons RUSA and MAEMI (태풍 내습 시 지상 최대풍 추정을 위한 WRF 수치모의 사례 연구 : 태풍 RUSA와 MAEMI를 대상으로)

  • Jung, Woo-Sik;Park, Jong-Kil;Kim, Eun-Byul;Lee, Bo-Ram
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.517-533
    • /
    • 2012
  • This study calculated wind speed at the height of 10 m using a disaster prediction model(Florida Public Hurricane Loss Model, FPHLM) that was developed and used in the United States. Using its distributions, a usable information of surface wind was produced for the purpose of disaster prevention when the typhoon attack. The advanced research version of the WRF (Weather Research and Forecasting) was used in this study, and two domains focusing on South Korea were determined through two-way nesting. A horizontal time series and vertical profile analysis were carried out to examine whether the model provided a resonable simulation, and the meteorological factors, including potential temperature, generally showed the similar distribution with observational data. We determined through comparison of observations that data taken at 700 hPa and used as input data to calculate wind speed at the height of 10 m for the actual terrain was suitable for the simulation. Using these results, the wind speed at the height of 10 m for the actual terrain was calculated and its distributions were shown. Thus, a stronger wind occurred in coastal areas compared to inland areas showing that coastal areas are more vulnerable to strong winds.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Skillful Wind Field Simulation over Complex Terrain using Coupling System of Atmospheric Prognostic and Diagnostic Models (대기예보모형과 진단모형 결합을 통한 복잡지형 바람장 해석능력 평가)

  • Lee, Hwa-Woon;Kim, Dong-Hyeok;Lee, Soon-Hwan;Kim, Min-Jung;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • A system coupled the prognostic WRF mesoscale model and CALMET diagnostic model has been employed for predicting high-resolution wind field over complex coastal area. WRF has three nested grids down to from during two days from 24 August 2007 to 26 August 2007. CALMET simulation is performed using both initial meteorological field from WRF coarsest results and surface boundary condition that is Shuttle Radar Topography Mission (SRTM) 90m topography and Environmental Geographic Information System (EGIS) 30m landuse during same periods above. Four Automatic Weather System (AWS) and a Sonic Detection And Ranging (SODAR) are used to verify modeled wind fields. Horizontal wind fields in CM_100m is not only more complex but better simulated than WRF_1km results at Backwoon and Geumho in which there are shown stagnation, blocking effects and orographically driven winds. Being increased in horizontal grid spacing, CM_100m is well matched with vertically wind profile compared SODAR. This also mentions the importance of high-resolution surface boundary conditions when horizontal grid spacing is increased to produce detailed wind fields over complex terrain features.

Long-Term Trend of Surface Wind Speed in Korea: Physical and Statistical Homogenizations (한반도 지상 풍속의 장기 추세 추정: 관측 자료의 물리적 및 통계적 보정)

  • Choi, Yeong-Ju;Park, Chang-Hyun;Son, Seok-Woo;Kim, Hye-Jin
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.553-562
    • /
    • 2021
  • The long-term trend of surface wind speed in Korea is estimated by correcting wind measurements at 29 KMA weather stations from 1985 to 2019 with physical and statistical homogenization. The anemometer height changes at each station are first adjusted by applying physical homogenization using the power-law wind profile. The statistical homogenization is then applied to the adjusted data. A standard normal homogeneity test (SNHT) is particularly utilized. Approximately 40% of inhomogeneities detected by the SNHT match with the sea-level-height change of each station, indicating that an SNHT is an effective technique for reconciling data inhomogeneity. The long-term trends are compared with homogenized data. Statistically significant negative trends are observed along the coast, while insignificant trends are dominant inland. The mean trend, averaged over all stations, is -0.03 ± 0.07 m s-1 decade-1. This insignificant trend is due to a trend change across 2001. A decreasing trend of -0.10 m s-1 decade-1 reverses to an increasing trend of 0.03 m s-1 decade-1 from 2001. This trend change is consistent with mid-latitude wind change in the Northern hemisphere, indicating that the long-term trend of surface wind speed in Korea is partly determined by large-scale atmospheric circulation.

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

A Study on Nonlinear Interaction of Tidal Current and Wind-Induced Current using a Point Model (점모형을 이용한 조류와 취송류의 비선형 상호작용)

  • 이종찬;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The influence of vertical eddy viscosity to the nonlinear interaction of tidal current and wind-induced current is examined using a point model. A zero-equation turbulence model is derived by simplifying the q$^2$-q$^2$1 turbulence model under the assumption that the generation of turbulence kinetic energy is balanced with its dissipation and is further modified to include the depth of frictional influence properly The zero-equation turbulence model is derived and the possibility of resonance in the presence of Coriolis effect is suggested. The amplitudes of tidal currents remain the same regardless of the applied wind stress, but the over-tide component is generated due to the nonlinear interaction of tidal current and wind-induced current. Significant changes in the vertical profile of wind-induced currents can occur according to tide-induced background turbulence. The turbulence model can give rise to misleading results when applied to the wind-driven circulation in the tide-dominated sea such as Yellow Sea unless the tide-induced background turbulence is adequately included in the parameterization of vertical eddy viscosity.

  • PDF