Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.5.553

Long-Term Trend of Surface Wind Speed in Korea: Physical and Statistical Homogenizations  

Choi, Yeong-Ju (School of Earth and Environmental Sciences, Seoul National University)
Park, Chang-Hyun (School of Earth and Environmental Sciences, Seoul National University)
Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University)
Kim, Hye-Jin (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Atmosphere / v.31, no.5, 2021 , pp. 553-562 More about this Journal
Abstract
The long-term trend of surface wind speed in Korea is estimated by correcting wind measurements at 29 KMA weather stations from 1985 to 2019 with physical and statistical homogenization. The anemometer height changes at each station are first adjusted by applying physical homogenization using the power-law wind profile. The statistical homogenization is then applied to the adjusted data. A standard normal homogeneity test (SNHT) is particularly utilized. Approximately 40% of inhomogeneities detected by the SNHT match with the sea-level-height change of each station, indicating that an SNHT is an effective technique for reconciling data inhomogeneity. The long-term trends are compared with homogenized data. Statistically significant negative trends are observed along the coast, while insignificant trends are dominant inland. The mean trend, averaged over all stations, is -0.03 ± 0.07 m s-1 decade-1. This insignificant trend is due to a trend change across 2001. A decreasing trend of -0.10 m s-1 decade-1 reverses to an increasing trend of 0.03 m s-1 decade-1 from 2001. This trend change is consistent with mid-latitude wind change in the Northern hemisphere, indicating that the long-term trend of surface wind speed in Korea is partly determined by large-scale atmospheric circulation.
Keywords
Surface wind speed; linear trend; homogenization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, X., S. Jeong, H. Park, J. Kim, and C.-R. Park, 2020: Urbanization has stronger impacts than regional climate change on wind stilling: a lesson from South Korea. Environ. Res. Lett., 15, 054016, doi:10.1088/1748-9326/ab7e51.   DOI
2 Kim, H. U., B. J. Kim, H.-G. Nam, J. H. Jung, and J.-K. Shim, 2020: Climatological spatio-temporal variation of strong wind in Korea. Atmosphere, 30, 47-57, doi:10.14191/Atmos.2020.30.1.047 (in Korean with English abstract).   DOI
3 Kim, J., and K. Paik, 2015: Recent recovery of surface wind speed after decadal decrease: a focus on South Korea. Climate Dyn., 45, 1699-1712, doi:10.1007/s00382-015-2546-9.   DOI
4 Martinez, M. D., C. Serra, A. Burgueno, and X. Lana, 2010: Time trends of daily maximum and minimum temperatures in Catalonia (ne Spain) for the period 1975-2004. Int. J. Climatol., 30, 267-290, doi:10.1002/joc.1884.   DOI
5 McVicar, T. R., and Coauthers, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416, 182-205, doi:10.1016/j.jhydrol.2011.10.024.   DOI
6 Perron, P. and T. Yabu, 2009: Testing for shifts in trend with an integrated or stationary noise component. J. Bus. Econ. Stat., 27, 369-396.   DOI
7 Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Statist. Soc: Series C (Appl. Statist.), 28, 126-135.   DOI
8 Paulhus, J. L. H., and M. A. Kohler, 1952: Interpolation of missing precipitation records. Mon. Wea. Rev., 80, 129-133.   DOI
9 Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403.   DOI
10 Vautard, R., J. Cattiaux, P. Yiou, J.-N. Thepaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756-761, doi:10.1038/ngeo979.   DOI
11 Kim, D., and P. Perron, 2009: Assessing the relative power of structural break tests using a framework based on the approximate Bahadur slope. J. Econom., 149, 26-51.   DOI
12 Seo, J., D.-S. R. Park, J. Y. Kim, D. Youn, Y. B. Lim, and Y. Kim, 2018: Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999~2016) in Seoul, South Korea. Atmos. Chem. Phys., 18, 16121-16137, doi:10.5194/acp-18-16121-2018.   DOI
13 Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661-675.   DOI
14 Venema, V., and Coauthors, 2018: Guidance on the homogenization of climate station data. EarthArXiv, 83 pp, doi:10.31223/osf.io/8qzrf.
15 Von Neumann, J., 1941: Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist., 12, 367-395.   DOI
16 Wan, H., X. L. Wang, and V. R. Swail, 2010: Homogenization and trend analysis of Canadian near-surface wind speeds. J. Climate, 23, 1209-1225, doi:10.1175/2009JCLI3200.1.   DOI
17 Wu, J., J. Zha, D. Zhao, and Q. Yang, 2018: Changes in terrestrial near-surface wind speed and their possible causes: an overview. Climate Dyn., 51, 2039-2078, doi:10.1007/s00382-017-3997-y.   DOI
18 Zeng, Z., and Coauthors, 2019: A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change, 9, 979-985, doi:10.1038/s41558-019-0622-6.   DOI
19 Zhang, Z., and K. Wang, 2020: Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J. Climate, 33, 3989-4008, doi:10.1175/JCLID-19-0281.1.   DOI
20 Peterson, E. W., and J. P. Hennessey Jr., 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteorol., 17, 390-394.   DOI
21 Azorin-Molina, C., S. Rehman, J. A. Guijarro, T. R. McVicar, L. Minola, D. Chen, and S. M. Vicente-Serrano, 2018a: Recent trends in wind speed across Saudi Arabia, 1978-2013: a break in the stilling. Int. J. Climatol., 38, e966-e984, doi:10.1002/joc.5423.   DOI
22 Azorin-Molina, C., C., J. Asin, T. R. McVicar, L. Minola, J. I. Lopez- Moreno, S. M. Vicente-Serrano, and D. Chen, 2018b: Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement. Atmos. Res., 203, 175-188, doi:10.1016/j.atmosres.2017.12.010.   DOI
23 Buishand, T. A., 1982: Some methods for testing the homogeneity of rainfall records. J. Hydrology, 58, 11-27.   DOI
24 Chang, S. Y., and P. Perron, 2018: A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models. Econom. Rev., 37, 577-601, doi:10.1080/07474938.2015.1122142.   DOI
25 Kim, H.-J., and S.-W. Son, 2020: Recent Eurasian winter temperature change and its association with Arctic sea-ice loss. Polar Res., 39, 3363, doi:10.33265/polar.v39.3363.   DOI
26 Choi, Y.-J., C.-H. Park, S.-W. Son, J.-W. Lee, and D.-C. Hong, 2021: Long-term trend of surface wind speed in Korea: Anemometer height adjustment. Atmosphere, 31, 101-112, doi:10.14191/Atmos.2021.31.1.101 (in Korean with English abstract).   DOI
27 Guijarro, J. A., 2018: Homogenization of climatic series with Climatol. Tech. Rep., State Meteorological Agency (AEMET), Balearic Islands Office, Spain, 20 pp.
28 Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 7.
29 Khaliq, M. N., and T. B. M. J. Ouarda, 2007: On the critical values of the standard normal homogeneity test (SNHT). Int. J. Climatol., 27, 681-687.   DOI